18,049 research outputs found

    Acoustic Attenuation by Two-dimensional Arrays of Rigid Cylinders

    Full text link
    In this Letter, we present a theoretical analysis of the acoustic transmission through two-dimensional arrays of straight rigid cylinders placed parallelly in the air. Both periodic and completely random arrangements of the cylinders are considered. The results for the sound attenuation through the periodic arrays are shown to be in a remarkable agreement with the reported experimental data. As the arrangement of the cylinders is randomized, the transmission is significantly reduced for a wider range of frequencies. For the periodic arrays, the acoustic band structures are computed by the plane-wave expansion method and are also shown to agree with previous results.Comment: 4 pages, 3 figure

    Structural phase transition and dielectric relaxation in Pb(Zn1/3Nb2/3)O3 single crystals

    Get PDF
    The structure and the dielectric properties of Pb(Zn1/3Nb2/3)O3 (PZN) crystal have been investigated by means of high-resolution synchrotron x-ray diffraction (with an x-ray energy of 32 keV) and dielectric spectroscopy (in the frequency range of 100 Hz - 1 MHz). At high temperatures, the PZN crystal exhibits a cubic symmetry and polar nanoregions inherent to relaxor ferroelectrics are present, as evidenced by the single (222) Bragg peak and by the noticeable tails at the basis of the peak. At low temperatures, in addition to the well-known rhombohedral phase, another low-symmetry, probably ferroelectric, phase is found. The two phases coexist in the form of mesoscopic domains. The para- to ferroelectric phase transition is diffused and observed between 325 and 390 K, where the concentration of the low-temperature phases gradually increases and the cubic phase disappears upon cooling. However, no dielectric anomalies can be detected in the temperature range of diffuse phase transition. The temperature dependence of the dielectric constant show the maximum at higher temperature (Tm = 417 - 429 K, depending on frequency) with the typical relaxor dispersion at T < Tm and the frequency dependence of Tm fitted to the Vogel-Fulcher relation. Application of an electric field upon cooling from the cubic phase or poling the crystal in the ferroelectric phase gives rise to a sharp anomaly of the dielectric constant at T 390 K and diminishes greatly the dispersion at lower temperatures, but the dielectric relaxation process around Tm remains qualitatively unchanged. The results are discussed in the framework of the present models of relaxors and in comparison with the prototypical relaxor ferroelectric Pb(Mg1/3Nb2/3)O3.Comment: PDF file, 13 pages, 6 figures collected on pp.12-1

    Fractional exclusion and braid statistics in one dimension: a study via dimensional reduction of Chern-Simons theory

    Get PDF
    The relation between braid and exclusion statistics is examined in one-dimensional systems, within the framework of Chern-Simons statistical transmutation in gauge invariant form with an appropriate dimensional reduction. If the matter action is anomalous, as for chiral fermions, a relation between braid and exclusion statistics can be established explicitly for both mutual and nonmutual cases. However, if it is not anomalous, the exclusion statistics of emergent low energy excitations is not necessarily connected to the braid statistics of the physical charged fields of the system. Finally, we also discuss the bosonization of one-dimensional anyonic systems through T-duality.Comment: 19 pages, fix typo
    • …