476 research outputs found

    Overall Performance Evaluation of Tubular Scraper Conveyors Using a TOPSIS-Based Multiattribute Decision-Making Method

    Get PDF
    Properly evaluating the overall performance of tubular scraper conveyors (TSCs) can increase their overall efficiency and reduce economic investments, but such methods have rarely been studied. This study evaluated the overall performance of TSCs based on the technique for order of preference by similarity to ideal solution (TOPSIS). Three conveyors of the same type produced in the same factory were investigated. Their scraper space, material filling coefficient, and vibration coefficient of the traction components were evaluated. A mathematical model of the multiattribute decision matrix was constructed; a weighted judgment matrix was obtained using the DELPHI method. The linguistic positive-ideal solution (LPIS), the linguistic negative-ideal solution (LNIS), and the distance from each solution to the LPIS and the LNIS, that is, the approximation degrees, were calculated. The optimal solution was determined by ordering the approximation degrees for each solution. The TOPSIS-based results were compared with the measurement results provided by the manufacturer. The ordering result based on the three evaluated parameters was highly consistent with the result provided by the manufacturer. The TOPSIS-based method serves as a suitable evaluation tool for the overall performance of TSCs. It facilitates the optimal deployment of TSCs for industrial purposes

    Comparative transcriptomics in Yersinia pestis: a global view of environmental modulation of gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Environmental modulation of gene expression in <it>Yersinia pestis </it>is critical for its life style and pathogenesis. Using cDNA microarray technology, we have analyzed the global gene expression of this deadly pathogen when grown under different stress conditions <it>in vitro</it>.</p> <p>Results</p> <p>To provide us with a comprehensive view of environmental modulation of global gene expression in <it>Y. pestis</it>, we have analyzed the gene expression profiles of 25 different stress conditions. Almost all known virulence genes of <it>Y. pestis </it>were differentially regulated under multiple environmental perturbations. Clustering enabled us to functionally classify co-expressed genes, including some uncharacterized genes. Collections of operons were predicted from the microarray data, and some of these were confirmed by reverse-transcription polymerase chain reaction (RT-PCR). Several regulatory DNA motifs, probably recognized by the regulatory protein Fur, PurR, or Fnr, were predicted from the clustered genes, and a Fur binding site in the corresponding promoter regions was verified by electrophoretic mobility shift assay (EMSA).</p> <p>Conclusion</p> <p>The comparative transcriptomics analysis we present here not only benefits our understanding of the molecular determinants of pathogenesis and cellular regulatory circuits in <it>Y. pestis</it>, it also serves as a basis for integrating increasing volumes of microarray data using existing methods.</p

    Phenotypic and transcriptional analysis of the osmotic regulator OmpR in Yersinia pestis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The osmotic regulator OmpR in <it>Escherichia coli </it>regulates differentially the expression of major porin proteins OmpF and OmpC. In <it>Yersinia enterocolitica </it>and <it>Y. pseudotuberculosis</it>, OmpR is required for both virulence and survival within macrophages. However, the phenotypic and regulatory roles of OmpR in <it>Y. pestis </it>are not yet fully understood.</p> <p>Results</p> <p><it>Y. pestis </it>OmpR is involved in building resistance against phagocytosis and controls the adaptation to various stressful conditions met in macrophages. The <it>ompR </it>mutation likely did not affect the virulence of <it>Y. pestis </it>strain 201 that was a human-avirulent enzootic strain. The microarray-based comparative transcriptome analysis disclosed a set of 224 genes whose expressions were affected by the <it>ompR </it>mutation, indicating the global regulatory role of OmpR in <it>Y. pestis</it>. Real-time RT-PCR or <it>lacZ </it>fusion reporter assay further validated 16 OmpR-dependent genes, for which OmpR consensus-like sequences were found within their upstream DNA regions. <it>ompC</it>, <it>F</it>, <it>X</it>, and <it>R </it>were up-regulated dramatically with the increase of medium osmolarity, which was mediated by OmpR occupying the target promoter regions in a tandem manner.</p> <p>Conclusion</p> <p>OmpR contributes to the resistance against phagocytosis or survival within macrophages, which is conserved in the pathogenic yersiniae. <it>Y. pestis </it>OmpR regulates <it>ompC</it>, <it>F</it>, <it>X</it>, and <it>R </it>directly through OmpR-promoter DNA association. There is an inducible expressions of the pore-forming proteins OmpF, C, and × at high osmolarity in <it>Y. pestis</it>, in contrast to the reciprocal regulation of them in <it>E. coli</it>. The main difference is that <it>ompF </it>expression is not repressed at high osmolarity in <it>Y. pestis</it>, which is likely due to the absence of a promoter-distal OmpR-binding site for <it>ompF</it>.</p

    Characterization of Zur-dependent genes and direct Zur targets in Yersinia pestis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The zinc uptake regulator Zur is a Zn<sup>2+</sup>-sensing metalloregulatory protein involved in the maintenance of bacterial zinc homeostasis. Up to now, regulation of zinc homeostasis by Zur is poorly understood in <it>Y. pestis</it>.</p> <p>Results</p> <p>We constructed a <it>zur </it>null mutant of <it>Y. pestis </it>biovar <it>microtus </it>strain 201. Microarray expression analysis disclosed a set of 154 Zur-dependent genes of <it>Y. pestis </it>upon exposure to zinc rich condition. Real-time reverse transcription (RT)-PCR was subsequently used to validate the microarray data. Based on the 154 Zur-dependent genes, predicted regulatory Zur motifs were used to screen for potential direct Zur targets including three putative operons <it>znuA, znuCB </it>and <it>ykgM</it>-<it>RpmJ2</it>. The LacZ reporter fusion analysis verified that Zur greatly repressed the promoter activity of the above three operons. The subsequent electrophoretic mobility shift assay (EMSA) demonstrated that a purified Zur protein was able to bind to the promoter regions of the above three operons. The DNase I footprinting was used to identify the Zur binding sites for the above three operons, verifying the Zur box sequence as predicted previously in γ-Proteobacteria. The primer extension assay was further used to determine the transcription start sites for the above three operons and to localize the -10 and -35 elements. Zur binding sites overlapped the -10 sequence of its target promoters, which was consistent with the previous observation that Zur binding would block the entry of the RNA polymerase to repress the transcription of its target genes.</p> <p>Conclusion</p> <p>Zur as a repressor directly controls the transcription of <it>znuA, znuCB </it>and <it>ykgM</it>-<it>RpmJ2 </it>in <it>Y. pestis </it>by employing a conserved mechanism of Zur-promoter DNA association as observed in γ-Proteobacteria. Zur contributes to zinc homeostasis in <it>Y. pestis </it>likely through transcriptional repression of the high-affinity zinc uptake system ZnuACB and two alternative ribosomal proteins YkgM and RpmJ2.</p

    Regulatory effects of cAMP receptor protein (CRP) on porin genes and its own gene in Yersinia pestis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cAMP receptor protein (CRP) is a global bacterial regulator that controls many target genes. The CRP-cAMP complex regulates the <it>ompR-envZ </it>operon in <it>E. coli </it>directly, involving both positive and negative regulations of multiple target promoters; further, it controls the production of porins indirectly through its direct action on <it>ompR-envZ</it>. Auto-regulation of CRP has also been established in <it>E. coli</it>. However, the regulation of porin genes and its own gene by CRP remains unclear in <it>Y. pestis</it>.</p> <p>Results</p> <p><it>Y. pestis </it>employs a distinct mechanism indicating that CRP has no regulatory effect on the <it>ompR-envZ </it>operon; however, it stimulates <it>ompC </it>and <it>ompF </it>directly, while repressing <it>ompX</it>. No transcriptional regulatory association between CRP and its own gene can be detected in <it>Y. pestis</it>, which is also in contrast to the fact that CRP acts as both repressor and activator for its own gene in <it>E. coli</it>. It is likely that <it>Y. pestis </it>OmpR and CRP respectively sense different signals (medium osmolarity, and cellular cAMP levels) to regulate porin genes independently.</p> <p>Conclusion</p> <p>Although the CRP of <it>Y. pestis </it>shows a very high homology to that of <it>E. coli</it>, and the consensus DNA sequence recognized by CRP is shared by the two bacteria, the <it>Y. pestis </it>CRP can recognize the promoters of <it>ompC</it>, <it>F</it>, and <it>X </it>directly rather than that of its own gene, which is different from the relevant regulatory circuit of <it>E. coli</it>. Data presented here indicate a remarkable remodeling of the CRP-mediated regulation of porin genes and of its own one between these two bacteria.</p

    Migration and transformation of dissolved carbon during accumulated cyanobacteria decomposition in shallow eutrophic lakes: a simulated microcosm study

    Get PDF
    The decomposition processes of accumulated cyanobacteria can release large amounts of organic carbon and affect the carbon cycling in shallow eutrophic lakes. However, the migration and transformation mechanisms of dissolved carbon (DC) require further study and discussion. In this study, a 73-day laboratory microcosm experiment using suction samplers (Rhizon and syringe) was conducted to understand the migration and transformation of DC during the cyanobacteria decomposition. The decomposition of cyanobacteria biomass caused anoxic and reduction conditions, and changed the acid-base environment in the water column. During the early incubation (days 0–18), a large amount of cyanobacteria-derived particulate organic matter (POM) was decomposed into dissolved organic carbon (DOC) in the overlying water, reaching the highest peak value of 1.82 g L−1 in the treatment added the high cyanobacteria biomass (470 g). After 18 days of incubation, the mineralization of increased DOC to dissolved inorganic carbon (DIC) maintained a high DIC level of overlying water in treatments added cyanobacteria biomass. The treatment added the medium cyanobacteria biomass (235 g) presented the lower DOC/total dissolved carbon ratio than the high cyanobacteria biomass associated with the lower mineralization from DOC to DIC. Due to the concentration differences of DIC at water-sediment interface, the main migration of DIC from pore water to overlying water occurred in the treatment without added cyanobacteria biomass. However, the treatments added the cyanobacteria biomass presented the obvious diffusion of DOC and the low migration of DIC at the water-sediment interface. The diffusive fluxes of DOC at the water-sediment interface increased with the cyanobacteria biomass added, reaching the maximum value of 411.01 mg/(m2·d) in the treatment added the high cyanobacteria biomass. In the overlying water, the group added the sediment and medium cyanobacteria biomass presented a faster degradation of cyanobacteria-derived POM to DOC and a higher mineralization level of DOC to DIC than added the medium cyanobacteria biomass without sediment. Therefore, during accumulated cyanobacteria decomposition, the biomass of accumulated cyanobacteria and sediment property can influence the migration and transformation of DC, playing an important role in carbon cycling in shallow eutrophic lakes

    Identification and characterization of PhoP regulon members in Yersinia pestis biovar Microtus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcription regulator PhoP has been shown to be important for <it>Y. pestis </it>survival in macrophages and under various <it>in vitro </it>stresses. However, the mechanism by which PhoP promotes bacterial intracellular survival is not fully understood. Our previous microarray analysis suggested that PhoP governed a wide set of cellular pathways in <it>Y. pestis</it>. A series of biochemical experiments were done herein to study members of the PhoP regulon of <it>Y. pestis </it>biovar <it>Microtus</it>.</p> <p>Results</p> <p>By using gel mobility shift assay and quantitative RT-PCR, a total of 30 putative transcription units were characterized as direct PhoP targets. The primer extension assay was further used to determine the transcription start sites of 18 PhoP-dependent promoters and to localize the -10 and -35 elements. The DNase I footprinting was used to identify the PhoP-binding sites within 17 PhoP-dependent promoters, enabling the identification of PhoP box and matrix that both represented the conserved signals for PhoP recognition in <it>Y. pestis</it>. Data presented here providing a good basis for modeling PhoP-promoter DNA interactions that is crucial to the PhoP-mediated transcriptional regulation.</p> <p>Conclusion</p> <p>The proven direct PhoP targets include nine genes encoding regulators and 21 genes or operons with functions of detoxification, protection against DNA damages, resistance to antimicrobial peptides, and adaptation to magnesium limitation. We can presume that PhoP is a global regulator that controls a complex regulatory cascade by a mechanism of not only directly controlling the expression of specific genes, but also indirectly regulating various cellular pathways by acting on a set of dedicated regulators. These results help us gain insights into the PhoP-dependent mechanisms by which <it>Y. pestis </it>survives the antibacterial strategies employed by host macrophages.</p
    corecore