91,360 research outputs found

    Environment identification based memory scheme for estimation of distribution algorithms in dynamic environments

    Get PDF
    Copyright @ Springer-Verlag 2010.In estimation of distribution algorithms (EDAs), the joint probability distribution of high-performance solutions is presented by a probability model. This means that the priority search areas of the solution space are characterized by the probability model. From this point of view, an environment identification-based memory management scheme (EI-MMS) is proposed to adapt binary-coded EDAs to solve dynamic optimization problems (DOPs). Within this scheme, the probability models that characterize the search space of the changing environment are stored and retrieved to adapt EDAs according to environmental changes. A diversity loss correction scheme and a boundary correction scheme are combined to counteract the diversity loss during the static evolutionary process of each environment. Experimental results show the validity of the EI-MMS and indicate that the EI-MMS can be applied to any binary-coded EDAs. In comparison with three state-of-the-art algorithms, the univariate marginal distribution algorithm (UMDA) using the EI-MMS performs better when solving three decomposable DOPs. In order to understand the EI-MMS more deeply, the sensitivity analysis of parameters is also carried out in this paper.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant 60774064, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01

    Dual population-based incremental learning for problem optimization in dynamic environments

    Get PDF
    Copyright @ 2003 Asia Pacific Symposium on Intelligent and Evolutionary SystemsIn recent years there is a growing interest in the research of evolutionary algorithms for dynamic optimization problems since real world problems are usually dynamic, which presents serious challenges to traditional evolutionary algorithms. In this paper, we investigate the application of Population-Based Incremental Learning (PBIL) algorithms, a class of evolutionary algorithms, for problem optimization under dynamic environments. Inspired by the complementarity mechanism in nature, we propose a Dual PBIL that operates on two probability vectors that are dual to each other with respect to the central point in the search space. Using a dynamic problem generating technique we generate a series of dynamic knapsack problems from a randomly generated stationary knapsack problem and carry out experimental study comparing the performance of investigated PBILs and one traditional genetic algorithm. Experimental results show that the introduction of dualism into PBIL improves its adaptability under dynamic environments, especially when the environment is subject to significant changes in the sense of genotype space