305,126 research outputs found

    Euclidean solutions of Yang-Mills-dilaton theory

    Get PDF
    Classical solutions of the Yang-Mills-dilaton theory in Euclidean space-time are investigated. Our analytical and numerical results imply existence of infinite number of branches of dyonic type solutions labelled by the number of nodes of gauge field amplitude WW. We find that the branches of solutions exist in finite region of parameter space and discuss this issue in detail in different dilaton field normalization.Comment: 16 pages, 11 figures, references added, matches published vesio

    Distributed Estimation of Graph Spectrum

    Full text link
    In this paper, we develop a two-stage distributed algorithm that enables nodes in a graph to cooperatively estimate the spectrum of a matrix WW associated with the graph, which includes the adjacency and Laplacian matrices as special cases. In the first stage, the algorithm uses a discrete-time linear iteration and the Cayley-Hamilton theorem to convert the problem into one of solving a set of linear equations, where each equation is known to a node. In the second stage, if the nodes happen to know that WW is cyclic, the algorithm uses a Lyapunov approach to asymptotically solve the equations with an exponential rate of convergence. If they do not know whether WW is cyclic, the algorithm uses a random perturbation approach and a structural controllability result to approximately solve the equations with an error that can be made small. Finally, we provide simulation results that illustrate the algorithm.Comment: 15 pages, 2 figure

    Elements with finite Coxeter part in an affine Weyl group

    Full text link
    Let WaW_a be an affine Weyl group and η:WaW0\eta:W_a\longrightarrow W_0 be the natural projection to the corresponding finite Weyl group. We say that wWaw\in W_a has finite Coxeter part if η(w)\eta(w) is conjugate to a Coxeter element of W0W_0. The elements with finite Coxeter part is a union of conjugacy classes of WaW_a. We show that for each conjugacy class O\mathcal{O} of WaW_a with finite Coxeter part there exits a unique maximal proper parabolic subgroup WJW_J of WaW_a, such that the set of minimal length elements in O\mathcal{O} is exactly the set of Coxeter elements in WJW_J. Similar results hold for twisted conjugacy classes.Comment: 9 page

    Lax Operator for the Quantised Orthosymplectic Superalgebra U_q[osp(2|n)]

    Full text link
    Each quantum superalgebra is a quasi-triangular Hopf superalgebra, so contains a \textit{universal RR-matrix} in the tensor product algebra which satisfies the Yang-Baxter equation. Applying the vector representation π\pi, which acts on the vector module VV, to one side of a universal RR-matrix gives a Lax operator. In this paper a Lax operator is constructed for the CC-type quantum superalgebras Uq[osp(2n)]U_q[osp(2|n)]. This can in turn be used to find a solution to the Yang-Baxter equation acting on VVWV \otimes V \otimes W where WW is an arbitrary Uq[osp(2n)]U_q[osp(2|n)] module. The case W=VW=V is included here as an example.Comment: 15 page

    Distribusi stasioner rantai markov waktu diskrit

    Get PDF
    Misalkan X, n > 0 adalah Rantai Markov dalam ruang 11 bagian w berhingga atau tak berhingga tetapi terbilang dan dibatasi pada dua state. Masing-masing state akan melakukan distribusi ke state yang lain dengan Distribusi Stasioner 11. Formula Distribusi Stasioner n adalah Jika varibel random xi ,x2 , ..,xn e w _clan masing-masing juga mengalami Distrbusi Stasioner 11 akan dibuktikan bahwa itu tunggal dengan menggunakan Distribusi Awal no. Dengan menggunakan Proporsi Rata-rata Kedatangan dari state x ke state y yang dinotasikan dengan Gn(x'Y) n dimana state x adalah Rekuren dan Rekuren Positif akan dibuktikan ketunggalan dari Distribusi Stasioner fl