628 research outputs found

    Light Ring behind Wormhole Throat: Geodesics, Images and Shadows

    Full text link
    The geodesics of the Ellis-Bronnikov wormhole with two parameters are studied. The asymmetric wormhole has only one light ring and one innermost stable circular orbit located on one side of the wormhole throat. Consequently, certain light rays can be reflected back by the wormhole. Additionally, the same wormhole can have different appearances on both sides of the throat. We present novel images of the wormhole with a light ring behind the throat in a scenario with an accretion disk as the light source and in a backlit wormhole scenario, which are distinct from the images of other compact objects and have the potential to be observed.Comment: 26 pages, 14 figures, add reference

    A 97 fJ/Conversion Neuron-ADC with Reconfigurable Sampling and Static Power Reduction

    Full text link
    A bio-inspired Neuron-ADC with reconfigurable sampling and static power reduction for biomedical applications is proposed in this work. The Neuron-ADC leverages level-crossing sampling and a bio-inspired refractory circuit to compressively converts bio-signal to digital spikes and information-of-interest. The proposed design can not only avoid dissipating ADC energy on unnecessary data but also achieve reconfigurable sampling, making it appropriate for either low power operation or high accuracy conversion when dealing with various kinds of bio-signals. Moreover, the proposed dynamic comparator can reduce static power up to 41.1% when tested with a 10 kHz sinusoidal input. Simulation results of 40 nm CMOS process show that the Neuron-ADC achieves a maximum ENOB of 6.9 bits with a corresponding FoM of 97 fJ/conversion under 0.6 V supply voltage.Comment: Accepted to 2022 IEEE the 18th Asia Pacific Conference on Circuits and Systems (APCCAS

    Does the Dirac Cone Exist in Silicene on Metal Substrates?

    Full text link
    Absence of the Dirac cone due to a strong band hybridization is revealed to be a common feature for epitaxial silicene on metal substrates according to our first-principles calculations for silicene on Ir, Cu, Mg, Au, Pt, Al, and Ag substrates. The destroyed Dirac cone of silicene, however, can be effectively restored with linear or parabolic dispersion by intercalating alkali metal atoms between silicene and the metal substrates, offering an opportunity to study the intriguing properties of silicene without further transfer of silicene from the metal substrates

    Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations

    Full text link
    Although many prototype devices based on two-dimensional (2D) MoS2 have been fabricated and wafer scale growth of 2D MoS2 has been realized, the fundamental nature of 2D MoS2-metal contacts has not been well understood yet. We provide a comprehensive ab initio study of the interfacial properties of a series of monolayer (ML) and bilayer (BL) MoS2-metal contacts (metal = Sc, Ti, Ag, Pt, Ni, and Au). A comparison between the calculated and observed Schottky barrier heights (SBHs) suggests that many-electron effects are strongly suppressed in channel 2D MoS2 due to a charge transfer. The extensively adopted energy band calculation scheme fails to reproduce the observed SBHs in 2D MoS2-Sc interface. By contrast, an ab initio quantum transport device simulation better reproduces the observed SBH in the two types of contacts and highlights the importance of a higher level theoretical approach beyond the energy band calculation in the interface study. BL MoS2-metal contacts have a reduced SBH than ML MoS2-metal contacts due to the interlayer coupling and thus have a higher electron injection efficiency.Comment: 36 pages, 13 figures, 3 table

    Does P-type Ohmic Contact Exist in WSe2-metal Interfaces?

    Full text link
    Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of 2D WSe2 devices. We present the first comparative study of the interfacial properties between ML/BL WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for WSe2-Au contact, while the SOC chiefly reduces the hole SBH. In the absence of the SOC, Pd contact has the smallest hole SBH with a value no less than 0.22 eV. Dramatically, Pt contact surpasses Pd contact and becomes p-type Ohmic or quasi-Ohmic contact with inclusion of the SOC. Our study provides a theoretical foundation for the selection of favorable metal electrodes in ML/BL WSe2 devices