11,316 research outputs found

    X-ray outbursts of low-mass X-ray binary transients observed in the RXTE era

    Full text link
    We have performed a statistical study of the properties of 110 bright X-ray outbursts in 36 low-mass X-ray binary transients (LMXBTs) seen with the All-Sky Monitor (2--12 keV) on board the {\it Rossi X-ray Timing Explorer} ({\it RXTE}) in 1996--2011. We have measured a number of outburst properties, including peak X-ray luminosity, rate of change of luminosity on a daily timescale, ee-folding rise and decay timescales, outburst duration, and total radiated energy. We found that the average properties such as peak X-ray luminosity, rise and decay timescales, outburst duration, and total radiated energy of black hole LMXBTs, are at least two times larger than those of neutron star LMXBTs, implying that the measurements of these properties may provide preliminary clues as to the nature of the compact object of a newly discovered LMXBT. We also found that the outburst peak X-ray luminosity is correlated with the rate of change of X-ray luminosity in both the rise and the decay phases, which is consistent with our previous studies. Positive correlations between total radiated energy and peak X-ray luminosity, and between total radiated energy and the ee-folding rise or decay timescale, are also found in the outbursts. These correlations suggest that the mass stored in the disk before an outburst is the primary initial condition that sets up the outburst properties seen later. We also found that the outbursts of two transient stellar-mass ULXs in M31 also roughly follow the correlations, which indicate that the same outburst mechanism works for the brighter outbursts of these two sources in M31 that reached the Eddington luminosity.Comment: Accepted to Ap

    A decades-long fast-rise-exponential-decay flare in low-luminosity AGN NGC 7213

    Full text link
    We analysed the four-decades-long X-ray light curve of the low-luminosity active galactic nucleus (LLAGN) NGC 7213 and discovered a fast-rise-exponential-decay (FRED) pattern, i.e. the X-ray luminosity increased by a factor of β‰ˆ4\approx 4 within 200d, and then decreased exponentially with an ee-folding time β‰ˆ8116\approx 8116d (β‰ˆ22.2\approx 22.2 yr). For the theoretical understanding of the observations, we examined three variability models proposed in the literature: the thermal-viscous disc instability model, the radiation pressure instability model, and the tidal disruption event (TDE) model. We find that a delayed tidal disruption of a main-sequence star is most favourable; either the thermal-viscous disk instability model or radiation pressure instability model fails to explain some key properties observed, thus we argue them unlikely.Comment: Accepted for publication in MNRAS, updated version after proof correction

    Microscopic structures and thermal stability of black holes conformally coupled to scalar fields in five dimensions

    Full text link
    Completely from the thermodynamic point of view, we explore the microscopic character of a hairy black hole of Einstein's theory conformally coupled to a scalar field in five dimensions by means of the Ruppeiner thermodynamic geometry. We demonstrate that the scalar hairy black hole has rich microscopic structures in different parameter spaces. Moreover, we analyze the thermal stability of this black hole in detail.Comment: v1: 15 pages, 1 figure; v2: 19 pages, clarifications and references added; v3: clarifications and references added; v4: 21 pages, clarifications added; v5: minor clarifications and one reference added, final version to appear in Nuclear Physics

    Hawking Radiation of Five-dimensional Charged Black Holes with Scalar Fields

    Full text link
    We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.Comment: v1: 11 pages, 2 figures, 2 tables; v2: 12 pages, references and clarifications added, final version to appear in Phys. Lett.
    • …