81 research outputs found

    The 2CNF Boolean Formula Satisfiability Problem and the Linear Space Hypothesis

    Full text link
    We aim at investigating the solvability/insolvability of nondeterministic logarithmic-space (NL) decision, search, and optimization problems parameterized by size parameters using simultaneously polynomial time and sub-linear space on multi-tape deterministic Turing machines. We are particularly focused on a special NL-complete problem, 2SAT---the 2CNF Boolean formula satisfiability problem---parameterized by the number of Boolean variables. It is shown that 2SAT with nn variables and mm clauses can be solved simultaneously polynomial time and (n/2clog⁑n) polylog(m+n)(n/2^{c\sqrt{\log{n}}})\, polylog(m+n) space for an absolute constant c>0c>0. This fact inspires us to propose a new, practical working hypothesis, called the linear space hypothesis (LSH), which states that 2SAT3_3---a restricted variant of 2SAT in which each variable of a given 2CNF formula appears at most 3 times in the form of literals---cannot be solved simultaneously in polynomial time using strictly "sub-linear" (i.e., m(x)Ρ polylog(∣x∣)m(x)^{\varepsilon}\, polylog(|x|) for a certain constant Ρ∈(0,1)\varepsilon\in(0,1)) space on all instances xx. An immediate consequence of this working hypothesis is Lβ‰ NL\mathrm{L}\neq\mathrm{NL}. Moreover, we use our hypothesis as a plausible basis to lead to the insolvability of various NL search problems as well as the nonapproximability of NL optimization problems. For our investigation, since standard logarithmic-space reductions may no longer preserve polynomial-time sub-linear-space complexity, we need to introduce a new, practical notion of "short reduction." It turns out that, parameterized with the number of variables, 2SAT3β€Ύ\overline{\mathrm{2SAT}_3} is complete for a syntactically restricted version of NL, called Syntactic NLΟ‰_{\omega}, under such short reductions. This fact supports the legitimacy of our working hypothesis.Comment: (A4, 10pt, 25 pages) This current article extends and corrects its preliminary report in the Proc. of the 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017), August 21-25, 2017, Aalborg, Denmark, Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik 2017, vol. 83, pp. 62:1-62:14, 201

    Approximation Complexity of Complex-Weighted Degree-Two Counting Constraint Satisfaction Problems

    Get PDF
    Constraint satisfaction problems have been studied in numerous fields with practical and theoretical interests. In recent years, major breakthroughs have been made in a study of counting constraint satisfaction problems (or #CSPs). In particular, a computational complexity classification of bounded-degree #CSPs has been discovered for all degrees except for two, where the "degree" of an input instance is the maximal number of times that each input variable appears in a given set of constraints. Despite the efforts of recent studies, however, a complexity classification of degree-2 #CSPs has eluded from our understandings. This paper challenges this open problem and gives its partial solution by applying two novel proof techniques--T_{2}-constructibility and parametrized symmetrization--which are specifically designed to handle "arbitrary" constraints under randomized approximation-preserving reductions. We partition entire constraints into four sets and we classify the approximation complexity of all degree-2 #CSPs whose constraints are drawn from two of the four sets into two categories: problems computable in polynomial-time or problems that are at least as hard as #SAT. Our proof exploits a close relationship between complex-weighted degree-2 #CSPs and Holant problems, which are a natural generalization of complex-weighted #CSPs.Comment: A4, 10pt, 23 pages. This is a complete version of the paper that appeared in the Proceedings of the 17th Annual International Computing and Combinatorics Conference (COCOON 2011), Lecture Notes in Computer Science, vol.6842, pp.122-133, Dallas, Texas, USA, August 14-16, 201
    • …