2,589 research outputs found

    Deterministic Sampling of Sparse Trigonometric Polynomials

    Get PDF
    One can recover sparse multivariate trigonometric polynomials from few randomly taken samples with high probability (as shown by Kunis and Rauhut). We give a deterministic sampling of multivariate trigonometric polynomials inspired by Weil's exponential sum. Our sampling can produce a deterministic matrix satisfying the statistical restricted isometry property, and also nearly optimal Grassmannian frames. We show that one can exactly reconstruct every MM-sparse multivariate trigonometric polynomial with fixed degree and of length DD from the determinant sampling XX, using the orthogonal matching pursuit, and # X is a prime number greater than (MlogD)2(M\log D)^2. This result is almost optimal within the (logD)2(\log D)^2 factor. The simulations show that the deterministic sampling can offer reconstruction performance similar to the random sampling.Comment: 9 page

    Discrete schemes for Gaussian curvature and their convergence

    Get PDF
    In this paper, several discrete schemes for Gaussian curvature are surveyed. The convergence property of a modified discrete scheme for the Gaussian curvature is considered. Furthermore, a new discrete scheme for Gaussian curvature is resented. We prove that the new scheme converges at the regular vertex with valence not less than 5. By constructing a counterexample, we also show that it is impossible for building a discrete scheme for Gaussian curvature which converges over the regular vertex with valence 4. Finally, asymptotic errors of several discrete scheme for Gaussian curvature are compared