351 research outputs found

    Noise Folding in Completely Perturbed Compressed Sensing

    Get PDF
    This paper first presents a new generally perturbed compressed sensing (CS) model y=(A+E)(x+u)+e, which incorporated a general nonzero perturbation E into sensing matrix A and a noise u into signal x simultaneously based on the standard CS model y=Ax+e and is called noise folding in completely perturbed CS model. Our construction mainly will whiten the new proposed CS model and explore in restricted isometry property (RIP) and coherence of the new CS model under some conditions. Finally, we use OMP to give a numerical simulation which shows that our model is feasible although the recovered value of signal is not exact compared with original signal because of measurement noise e, signal noise u, and perturbation E involved

    Numerical simulations of the impacts of mountain on oasis effects in arid Central Asia

    Get PDF
    The oases in the mountain-basin systems of Central Asia are extremely fragile. Investigating oasis effects and oasis-desert interactions is important for understanding the ecological stability of oases. However, previous studies have been performed only in oasis-desert environments and have not considered the impacts of mountains. In this study, oasis effects were explored in the context of mountain effects in the northern Tianshan Mountains (NTM) using the Weather Research and Forecasting (WRF) model. Four numerical simulations are performed. The def simulation uses the default terrestrial datasets provided by the WRF model. The mod simulation uses actual terrestrial datasets from satellite products. The non-oasis simulation is a scenario simulation in which oasis areas are replaced by desert conditions, while all other conditions are the same as the mod simulation. Finally, the non-mountain simulation is a scenario simulation in which the elevation values of all grids are set to a constant value of 300 m, while all other conditions are the same as in the mod simulation. The mod simulation agrees well with near-surface measurements of temperature, relative humidity and latent heat flux. The Tianshan Mountains exert a cooling and wetting effects in the NTM region. The oasis breeze circulation (OBC) between oases and the deserts is counteracted by the stronger background circulation. Thus, the self-supporting mechanism of oases originating from the OBC plays a limited role in maintaining the ecological stability of oases in this mountain-basin system. However, the mountain wind causes the cold-wet'' island effects of the oases to extend into the oasis-desert transition zone at night, which is beneficial for plants in the transition region

    The hidden spin-momentum locking and topological defects in unpolarized light fields

    Full text link
    Electromagnetic waves characterized by intensity, phase, and polarization degrees of freedom are widely applied in data storage, encryption, and communications. However, these properties can be substantially affected by phase disorders and disturbances, whereas high-dimensional degrees of freedom including momentum and angular momentum of electromagnetic waves can offer new insights into their features and phenomena, for example topological characteristics and structures that are robust to these disturbances. Here, we discover and demonstrate theoretically and experimentally spin-momentum locking and topological defects in unpolarized light. The coherent spin is locked to the kinetic momentum except for a small coupling spin term, due to the simultaneous presence of transverse magnetic and electric components in unpolarized light. To cancel the coupling term, we employ a metal film acting as a polarizer to form some skyrmion-like spin textures at the metal/air interface. Using an in-house scanning optical microscopic system to image the out-of-plane spin density of the focused unpolarized vortex light, we obtained experimental results that coincide well with our theoretical predictions. The theory and technique promote the applications of topological defects in optical data storage, encryption, and decryption, and communications.Comment: 9 pages, 3 figures, 47 reference

    Joint Localization and Communication Enhancement in Uplink Integrated Sensing and Communications System with Clock Asynchronism

    Full text link
    In this paper, we propose a joint single-base localization and communication enhancement scheme for the uplink (UL) integrated sensing and communications (ISAC) system with asynchronism, which can achieve accurate single-base localization of user equipment (UE) and significantly improve the communication reliability despite the existence of timing offset (TO) due to the clock asynchronism between UE and base station (BS). Our proposed scheme integrates the CSI enhancement into the multiple signal classification (MUSIC)-based AoA estimation and thus imposes no extra complexity on the ISAC system. We further exploit a MUSIC-based range estimation method and prove that it can suppress the time-varying TO-related phase terms. Exploiting the AoA and range estimation of UE, we can estimate the location of UE. Finally, we propose a joint CSI and data signals-based localization scheme that can coherently exploit the data and the CSI signals to improve the AoA and range estimation, which further enhances the single-base localization of UE. The extensive simulation results show that the enhanced CSI can achieve equivalent bit error rate performance to the minimum mean square error (MMSE) CSI estimator. The proposed joint CSI and data signals-based localization scheme can achieve decimeter-level localization accuracy despite the existing clock asynchronism and improve the localization mean square error (MSE) by about 8 dB compared with the maximum likelihood (ML)-based benchmark method.Comment: 13 pages, 11 figures, submitted to JSAC special issue "Positioning and Sensing Over Wireless Networks

    Transmission infrared micro-spectroscopic study of individual human hair

    Full text link
    Understanding the optical transmission property of human hair, especially in the infrared regime, is vital in physical, clinical, and biomedical research. However, the majority of infrared spectroscopy on human hair is performed in the reflection mode, which only probes the absorptance of the surface layer. The direct transmission spectrum of individual hair without horizontal cut offers a rapid and non-destructive test of the hair cortex but is less investigated experimentally due to the small size and strong absorption of the hair. In this work, we conduct transmission infrared micro-spectroscopic study on individual human hair. By utilizing direct measurements of the transmission spectrum using a Fourier-transform infrared microscope, the human hair is found to display prominent band filtering behavior. The high spatial resolution of infrared micro-spectroscopy further allows the comparison among different regions of hair. In a case study of adult-onset Still's disease, the corresponding infrared transmission exhibits systematic variations of spectral weight as the disease evolves. The geometry effect of the internal hair structure is further quantified using the finite-element simulation. The results imply that the variation of spectral weight may relate to the disordered microscopic structure variation of the hair cortex during the inflammatory attack. Our work reveals the potential of hair infrared transmission spectrum in tracing the variation of hair cortex retrospectively

    Transcriptome analysis of <em>Marsupenaeus japonicus</em> hepatopancreas during WSSV persistent infection

    Get PDF
    White Spot Syndrome Virus (WSSV) can cause a large-scale death of cultured shrimp and significant damage to the shrimp farming industry. Marsupenaeus japonicus is one of the world's most important economically farmed shrimp. This study found that some M. japonicus survived the spontaneous outbreak of WSSV. Surprisingly, these virus-carrying shrimp showed no apparent illnesses or outbreaks of white spot disease in the subsequent cultivation, and their body size was substantially smaller than healthy shrimp, indicating a long-term fight between the host and the virus. To investigate this interesting phenomenon, we analyzed the transcriptomes of healthy shrimp and survived shrimp through the RNA-Seq platform, attempting to reveal the underlying molecular mechanism of the struggle between M. japonicus and WSSV. Transcriptional analysis showed that a total of 37,815 unigenes were assembled, with an average length of 1,193.34 bp and N50 of 2,049 bp. In the KEGG pathway, enrichment analysis of DEGs pathways related to immunity, biosynthesis, and growth metabolism was enriched, including pentose phosphate pathway, glycerophospholipid metabolism, fatty acid biosynthesis, Wnt signaling pathway, biosynthesis of amino acids, ascorbate, and aldarate metabolism. Our data showed a delicate balance between M. japonicus and WSSV infection: On the one hand, WSSV infection can cause host metabolism and biosynthesis disorders in the host, and the virus consumes a portion of the material and energy required for shrimp average growth and reproduction. If WSSV infection persisted for a long time, then the growth rate of M. japonicus decreased. On the other hand, the host can regulate immune defense to resist subsequent viral infection. This study reveals the underlying molecular mechanism of a long-term battle of M. japonicus against WSSV infection, providing novel insights for preventing WSSV persistent infection in M. japonicus and other farmed shrimp species