49 research outputs found

    Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: a perspective from long‐term data assimilation

    Get PDF
    It is critical to accurately estimate carbon (C) turnover time as it dominates the uncertainty in ecosystem C sinks and their response to future climate change. In the absence of direct observations of ecosystem C losses, C turnover times are commonly estimated under the steady state assumption (SSA), which has been applied across a large range of temporal and spatial scales including many at which the validity of the assumption is likely to be violated. However, the errors associated with improperly applying SSA to estimate C turnover time and its covariance with climate as well as ecosystem C sequestrations have yet to be fully quantified. Here, we developed a novel model-data fusion framework and systematically analyzed the SSA-induced biases using time-series data collected from 10 permanent forest plots in the eastern China monsoon region. The results showed that (a) the SSA significantly underestimated mean turnover times (MTTs) by 29%, thereby leading to a 4.83-fold underestimation of the net ecosystem productivity (NEP) in these forest ecosystems, a major C sink globally; (b) the SSA-induced bias in MTT and NEP correlates negatively with forest age, which provides a significant caveat for applying the SSA to young-aged ecosystems; and (c) the sensitivity of MTT to temperature and precipitation was 22% and 42% lower, respectively, under the SSA. Thus, under the expected climate change, spatiotemporal changes in MTT are likely to be underestimated, thereby resulting in large errors in the variability of predicted global NEP. With the development of observation technology and the accumulation of spatiotemporal data, we suggest estimating MTTs at the disequilibrium state via long-term data assimilation, thereby effectively reducing the uncertainty in ecosystem C sequestration estimations and providing a better understanding of regional or global C cycle dynamics and C-climate feedback

    C-4 herbs dominate the reservoir flood area of the Three Gorges Reservoir

    No full text
    Dam operations can dramatically degenerate riparian vegetation. To improve the restoration practices of reservoir riparian vegetation, it is important to understand which and how a dominant species physiologically and ecologically maintain high fitness in this type of ecosystems. We explored the compositional change of riparian plants during the long-termflood-dry-flood cycle in the reservoir flood area (RFA) of the Three Gorges Reservoir Area (TGRA), China. In total 769 vascular plant species (belonging to 415 genera in 122 families) existed in the study area before damming (prior to 2006, i.e. the natural riparian zone). Following damming (2008-2018), plant species diversity rapidly declined, with only 51 species identified in 2018 (45 genera in 22 families). Before damming, perennial herbs, annual herbs and shrubs co-dominated the study area. After damming, the proportion of shrubs decreased significantly, and the proportion of annuals to total plants increased by 20%. Alien invasive species proportion increased from 5% to 18%. Notably, the proportion of C-4 species increased significantly from 7% to 31%. Ten of the 16 dominant species in RFA since 2015 were C-4 Poaceae species. Our study indicates that dam construction could cause severe biodiversity loss of riparian plants and draw alien species invasion. Besides, C-4 herbs would dominate the RFA. A higher photosynthetic rate could help C-4 plants grow faster to cope with the nitrogen deficiency and short growth cycles in RFA. Hence, screening C-4 herbs for vegetation restoration might aid in maintaining biodiversity and ecosystem functions in flood-dry-flood reservoir flood areas. (C) 2020 Elsevier B.V. All rights reserved

    Leaf litter carbon, nitrogen, and phosphorus stoichiometric patterns as related to climatic factors and leaf habits across Chinese broad-leaved tree species

    No full text
    Our understanding of how climate and leaf habit (evergreen vs. deciduous) drive leaf litter carbon (C), nitrogen (N), and phosphorus (P) stoichiometric patterns is largely limited but is particularly important for broad-leaved forests, since the forest is sensitive to climate change. Here, we investigated leaf litter C, N, and P stoichiometric ratios of broad-leaved tree species in relation to climate and leaf habit using previous publications and our additional samplings across China. We found that mean leaf litter C:N across Chinese broad-leaved tree species was within the range of the global flora, whereas C:P was lower and N:P higher. Evergreen species displayed higher leaf litter C:N, C:P, and N:P than their deciduous counterparts. Both leaf litter C:P and N:P for all species pooled were negatively correlated with latitude, driven by mean annual precipitation (MAP) and mean annual temperature, respectively, while leaf litter C:N displayed no clear latitudinal trend. The direction and magnitude of leaf litter C, N, and P stoichiometric ratios in response to climate diverged between leaf habits. For example, evergreen leaf litter C:N was negatively correlated with MAP, while deciduous counterparts did not respond significantly to MAP. We conclude that leaf litter C, N, and P stoichiometric ratios shifted along the climatic gradient, and the strength of such shifts differed between leaf habits. Therefore, leaf litter stoichiometric patterns across leaf habits suggest that any climate change-driven shift in species distribution may potentially alter the ecosystem's nutrient cycling processes of evergreen- and deciduous-dominated broad-leaved forests differentially

    Leaf litter carbon, nitrogen, and phosphorus stoichiometric patterns as related to climatic factors and leaf habits across Chinese broad-leaved tree species

    No full text
    Our understanding of how climate and leaf habit (evergreen vs. deciduous) drive leaf litter carbon (C), nitrogen (N), and phosphorus (P) stoichiometric patterns is largely limited but is particularly important for broad-leaved forests, since the forest is sensitive to climate change. Here, we investigated leaf litter C, N, and P stoichiometric ratios of broad-leaved tree species in relation to climate and leaf habit using previous publications and our additional samplings across China. We found that mean leaf litter C:N across Chinese broad-leaved tree species was within the range of the global flora, whereas C:P was lower and N:P higher. Evergreen species displayed higher leaf litter C:N, C:P, and N:P than their deciduous counterparts. Both leaf litter C:P and N:P for all species pooled were negatively correlated with latitude, driven by mean annual precipitation (MAP) and mean annual temperature, respectively, while leaf litter C:N displayed no clear latitudinal trend. The direction and magnitude of leaf litter C, N, and P stoichiometric ratios in response to climate diverged between leaf habits. For example, evergreen leaf litter C:N was negatively correlated with MAP, while deciduous counterparts did not respond significantly to MAP. We conclude that leaf litter C, N, and P stoichiometric ratios shifted along the climatic gradient, and the strength of such shifts differed between leaf habits. Therefore, leaf litter stoichiometric patterns across leaf habits suggest that any climate change-driven shift in species distribution may potentially alter the ecosystem's nutrient cycling processes of evergreen- and deciduous-dominated broad-leaved forests differentially

    Fruiting characteristics and seed germination capacity of Abies fargesii in Shennongjia Nature Reserve

    No full text
    corecore