930 research outputs found

    A hyper-heuristic for adaptive scheduling in computational grids

    Get PDF
    In this paper we present the design and implementation of an hyper-heuristic for efficiently scheduling independent jobs in computational grids. An efficient scheduling of jobs to grid resources depends on many parameters, among others, the characteristics of the resources and jobs (such as computing capacity, consistency of computing, workload, etc.). Moreover, these characteristics change over time due to the dynamic nature of grid environment, therefore the planning of jobs to resources should be adaptively done. Existing ad hoc scheduling methods (batch and immediate mode) have shown their efficacy for certain types of resource and job characteristics. However, as stand alone methods, they are not able to produce the best planning of jobs to resources for different types of Grid resources and job characteristics. In this work we have designed and implemented a hyper-heuristic that uses a set of ad hoc (immediate and batch mode) scheduling methods to provide the scheduling of jobs to Grid resources according to the Grid and job characteristics. The hyper-heuristic is a high level algorithm, which examines the state and characteristics of the Grid system (jobs and resources), and selects and applies the ad hoc method that yields the best planning of jobs. The resulting hyper-heuristic based scheduler can be thus used to develop network-aware applications that need efficient planning of jobs to resources. The hyper-heuristic has been tested and evaluated in a dynamic setting through a prototype of a Grid simulator. The experimental evaluation showed the usefulness of the hyper-heuristic for planning of jobs to resources as compared to planning without knowledge of the resource and job characteristics.Peer ReviewedPostprint (author's final draft

    JXTA-Overlay: a P2P platform for distributed, collaborative, and ubiquitous computing

    Get PDF
    With the fast growth of the Internet infrastructure and the use of large-scale complex applications in industries, transport, logistics, government, health, and businesses, there is an increasing need to design and deploy multifeatured networking applications. Important features of such applications include the capability to be self-organized, be decentralized, integrate different types of resources (personal computers, laptops, and mobile and sensor devices), and provide global, transparent, and secure access to resources. Moreover, such applications should support not only traditional forms of reliable distributing computing and optimization of resources but also various forms of collaborative activities, such as business, online learning, and social networks in an intelligent and secure environment. In this paper, we present the Juxtapose (JXTA)-Overlay, which is a JXTA-based peer-to-peer (P2P) platform designed with the aim to leverage capabilities of Java, JXTA, and P2P technologies to support distributed and collaborative systems. The platform can be used not only for efficient and reliable distributed computing but also for collaborative activities and ubiquitous computing by integrating in the platform end devices. The design of a user interface as well as security issues are also tackled. We evaluate the proposed system by experimental study and show its usefulness for massive processing computations and e-learning applications.Peer ReviewedPostprint (author's final draft

    Parallel memetic algorithms for independent job scheduling in computational grids

    Get PDF
    In this chapter we present parallel implementations of Memetic Algorithms (MAs) for the problem of scheduling independent jobs in computational grids. The problem of scheduling in computational grids is known for its high demanding computational time. In this work we exploit the intrinsic parallel nature of MAs as well as the fact that computational grids offer large amount of resources, a part of which could be used to compute the efficient allocation of jobs to grid resources. The parallel models exploited in this work for MAs include both fine-grained and coarse-grained parallelization and their hybridization. The resulting schedulers have been tested through different grid scenarios generated by a grid simulator to match different possible configurations of computational grids in terms of size (number of jobs and resources) and computational characteristics of resources. All in all, the result of this work showed that Parallel MAs are very good alternatives in order to match different performance requirement on fast scheduling of jobs to grid resources.Peer ReviewedPostprint (author's final draft

    Distributed-based massive processing of activity logs for efficient user modeling in a Virtual Campus

    Get PDF
    This paper reports on a multi-fold approach for the building of user models based on the identification of navigation patterns in a virtual campus, allowing for adapting the campus’ usability to the actual learners’ needs, thus resulting in a great stimulation of the learning experience. However, user modeling in this context implies a constant processing and analysis of user interaction data during long-term learning activities, which produces huge amounts of valuable data stored typically in server log files. Due to the large or very large size of log files generated daily, the massive processing is a foremost step in extracting useful information. To this end, this work studies, first, the viability of processing large log data files of a real Virtual Campus using different distributed infrastructures. More precisely, we study the time performance of massive processing of daily log files implemented following the master-slave paradigm and evaluated using Cluster Computing and PlanetLab platforms. The study reveals the complexity and challenges of massive processing in the big data era, such as the need to carefully tune the log file processing in terms of chunk log data size to be processed at slave nodes as well as the bottleneck in processing in truly geographically distributed infrastructures due to the overhead caused by the communication time among the master and slave nodes. Then, an application of the massive processing approach resulting in log data processed and stored in a well-structured format is presented. We show how to extract knowledge from the log data analysis by using the WEKA framework for data mining purposes showing its usefulness to effectively build user models in terms of identifying interesting navigation patters of on-line learners. The study is motivated and conducted in the context of the actual data logs of the Virtual Campus of the Open University of Catalonia.Peer ReviewedPostprint (author's final draft

    A study into the feasibility of generic programming for the construction of complex software

    Get PDF
    A high degree of abstraction and capacity for reuse can be obtained in software design through the use of Generic Programming (GP) concepts. Despite widespread use of GP in computing, some areas such as the construction of generic component libraries as the skeleton for complex computing systems with extensive domains have been neglected. Here we consider the design of a library of generic components based on the GP paradigm implemented with Java. Our aim is to investigate the feasibility of using GP paradigm in the construction of complex computer systems where the management of users interacting with the system and the optimisation of the system’s resources is required.Postprint (author's final draft

    The parallel approximability of a subclass of quadratic programming

    Get PDF
    In this paper we deal with the parallel approximability of a special class of Quadratic Programming (QP), called Smooth Positive Quadratic Programming. This subclass of QP is obtained by imposing restrictions on the coefficients of the QP instance. The Smoothness condition restricts the magnitudes of the coefficients while the positiveness requires that all the coefficients be non-negative. Interestingly, even with these restrictions several combinatorial problems can be modeled by Smooth QP. We show NC Approximation Schemes for the instances of Smooth Positive QP. This is done by reducing the instance of QP to an instance of Positive Linear Programming, finding in NC an approximate fractional solution to the obtained program, and then rounding the fractional solution to an integer approximate solution for the original problem. Then we show how to extend the result for positive instances of bounded degree to Smooth Integer Programming problems. Finally, we formulate several important combinatorial problems as Positive Quadratic Programs (or Positive Integer Programs) in packing/covering form and show that the techniques presented can be used to obtain NC Approximation Schemes for "dense" instances of such problems.Peer ReviewedPostprint (published version

    On parallel versus sequential approximation

    Get PDF
    In this paper we deal with the class NCX of NP Optimization problems that are approximable within constant ratio in NC. This class is the parallel counterpart of the class APX. Our main motivation here is to reduce the study of sequential and parallel approximability to the same framework. To this aim, we first introduce a new kind of NC-reduction that preserves the relative error of the approximate solutions and show that the class NCX has {em complete} problems under this reducibility. An important subset of NCX is the class MAXSNP, we show that MAXSNP-complete problems have a threshold on the parallel approximation ratio that is, there are positive constants epsilon1epsilon_1, epsilon2epsilon_2 such that although the problem can be approximated in P within epsilon1epsilon_1 it cannot be approximated in NC within epsilon_2$, unless P=NC. This result is attained by showing that the problem of approximating the value obtained through a non-oblivious local search algorithm is P-complete, for some values of the approximation ratio. Finally, we show that approximating through non-oblivious local search is in average NC.Postprint (published version

    A game-theoretic and hybrid genetic meta-heuristics model for security-assured scheduling of independent jobs in computational grids

    Get PDF
    Scheduling independent tasks in Computational Grids commonly arises in many Grid-enabled large scale applications. Much of current research in this domain is focused on the improvement of the efficiency of the Grid schedulers, both at global and local levels, which is the basis for Grid systems to leverage large computing capacities. However, unlike traditional scheduling, in Grid systems security requirements are very important to scheduling tasks/applications to Grid resources. The objective is thus to achieve efficient and secure allocation of tasks to machines. In this paper we propose a new model for secure scheduling at the Grid sites by combining game-theoretic and genetic-based meta-heuristic approaches. The game-theoretic model takes into account the realistic feature that Grid users usually perform independently of each other. The scheduling problem is then formalized as a noncooperative non-zero sum game with Nash equilibria as the solutions. The game cost function is minimized, at global and user levels, by using four genetic-based hybrid meta-heuristics. We have evaluated the proposed model through a static benchmark of instances, for which we have measured two basic metrics, namely the makespan and flowtime. The obtained results suggest that it is more resilient for the Grid users (and local schedulers) to tolerate some job delays defined as additional scheduling cost due to security requirements instead of taking a risk of allocating at unreliable resources.Peer ReviewedPostprint (published version

    Modelling of user requirements and behaviors in computational grids

    Get PDF
    In traditional distributed computing systems a few user types are found having ratherPeer ReviewedPostprint (published version

    Game-theoretic, market and meta-heuristics approaches for modelling scheduling and resource allocation in grid systems

    Get PDF
    Task scheduling and resource allocation are the crucial issues in any large scale distributed system, such as Computational Grids (CGs). However, traditional computational models and resolution methods cannot effectively tackle the complex nature of Grid, where the resources and users belong to many administrative domains with their own access policies, users' privileges, etc. Recently, researchers are investigating the use of game theoretic approaches for modelling task and resource allocation problems in CGs. In this paper, we present a compact survey of the most relevant research proposals in the literature to use game-based models for the resource allocation problems and their resolution using metaheuristic methods. We emphasize the need of the translation of the traditional economical models into the game scenarios and the use of metaheuristic schedulers for solving such games in order to address the new complex scheduling and allocation criterions. We study the case of asymmetric Stackelberg game used for modelling the Grid users' behavior, where the security and reliability criterions are aggregated and defined as the users' costs functions. The obtained results show the efficiency of the hybridization of heuristic-based approaches with game models, which enables to include additional requirements and features into the computational models and tackle more effectively the resolution of the applied schedulers.Peer ReviewedPostprint (published version
    • …
    corecore