5,504 research outputs found

    Medium information from anisotropic flow and jet quenching in relativistic heavy ion collisions

    Full text link
    Within a multiphase transport (AMPT) model, where the initial conditions are obtained from the recently updated HIJING 2.0 model, the recent anisotropic flow and suppression data for charged hadrons in Pb+Pb collisions at the LHC center of mass energy of 2.76 TeV are explored to constrain the properties of the partonic medium formed. In contrast to RHIC, the measured centrality dependence of charged hadron multiplicity dN_ch/deta at LHC provides severe constraint to the largely uncertain gluon shadowing parameter s_g. We find final-state parton scatterings reduce considerably hadron yield at midrapidity and enforces a smaller s_g to be consistent with dN_ch/deta data at LHC. With the parton shadowing so constrained, hadron production and flow over a wide transverse momenta range are investigated in AMPT. The model calculations for the elliptic and triangular flow are found to be in excellent agreement with the RHIC data, and predictions for the flow coefficients v_n(p_T, cent) at LHC are given. The magnitude and pattern of suppression of the hadrons in AMPT are found consistent with the measurements at RHIC. However, the suppression is distinctly overpredicted in Pb+Pb collisions at the LHC energy. Reduction of the QCD coupling constant alpha_s by ~30% in the higher temperature plasma formed at LHC reproduces the measured hadron suppression.Comment: Talk given by Subrata Pal at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Silicon Pad Detectors for the PHOBOS Experiment at RHIC

    Full text link
    The PHOBOS experiment is well positioned to obtain crucial information about relativistic heavy ion collisions at RHIC, combining a multiplicity counter with a multi-particle spectrometer. The multiplicity arrays will measure the charged particle multiplicity over the full solid angle. The spectrometer will be able to identify particles at mid-rapidity. The experiment is constructed almost exclusively of silicon pad detectors. Detectors of nine different types are configured in the multiplicity and vertex detector (22,000 channels) and two multi-particle spectrometers (120,000 channels). The overall layout of the experiment, testing of the silicon sensors and the performance of the detectors during the engineering run at RHIC in 1999 are discussed.Comment: 7 pages, 7 figures, 1 table, Late

    Is Strangeness still interesting at RHIC ?

    Full text link
    With the advent of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL), Heavy Ion Physics will enter a new energy regime. The question is whether the signatures proposed for the discovery of a phase transition from hadronic matter to a Quark Gluon Plasma (QGP), that were established on the basis of collisions at the BEVALAC, the AGS, and the SPS, respectively, are still useful and detectable at these high incident energies. In the past two decades, measurements related to strangeness formation in the collision were advocated as potential signatures and were tested in numerous fixed target experiments at the AGS and the SPS. In this article I will review the capabilities of the RHIC detectors to measure various aspects of strangeness, and I will try to answer the question whether the information content of those measurements is comparable to the one at lower energies.Comment: 12 pages, 7 figures, Invited Talk at the IV International Conference on Strangeness in Quark Matter, Padova (Italy), July 20-24, 199

    Quenching and Tomography from RHIC to LHC

    Full text link
    We compare fully perturbative and fully nonperturbative pictures of high-pT energy loss calculations to the first results from LHC. While over-suppressed compared to published ALICE data, parameter-free pQCD predictions based on the WHDG energy loss model constrained to RHIC data simultaneously describe well the preliminary CMS hadron suppression, ATLAS charged hadron v2, and ALICE D meson suppression; we also provide for future reference WHDG predictions for B meson RAA. However, energy loss calculations based on AdS/CFT also qualitatively describe well the RHIC pion and non-photonic electron suppression and LHC charged hadron suppression. We propose the double ratio of charm to bottom quark RAA will qualitatively distinguish between these two energy loss pictures.Comment: 4 pages, 3 figures. Proceedings for Quark Matter 201

    NLO analysis of inclusive jet, tagged jet and di-jet production in Pb+Pb collisions at the LHC

    Full text link
    We present results and predictions at next-to-leading order for the recent LHC lead-lead run at a center-of-mass energy of 2.76 TeV per nucleon-nucleon pair. Specifically, we focus on the suppression the single and double inclusive jet cross sections and demonstrate how the di-jet asymmetry, recently measured by ATLAS and CMS, can be extracted from this general result. The case of jets tagged by an electroweak boson is exemplified by the Z0Z^0+jet channel. We predict a signature transition from enhancement to suppression of the tagged jet related to the medium-induced modification of the parton shower. Finally, we clarify the relation between the suppression of inclusive jets, tagged jets and di-jets and the quenching of inclusive particles on the example of the recent ALICE charged hadron attenuation data.Comment: Version abridged to 4 pages to be published in J. Phys.

    Report of the LHC Computing Grid Project. RTAG 12: Collaborative Tools

    No full text
    This document is the final report of the LHC Computing Grid (LCG) Project's Requirements and Technical Assessment Group (RTAG 12) on Collaborative Tools. It presents a summary of the requirements of the LHC collaborations for Collaborative Tools, assesses the current status of those tools in common use, discusses likely relevant future development, and provides recommendations for action by the LCG, the collaborations, and CERN for the immediate and long-term future. The requirements and assessments were assembled from formal and informal interactions between members of the RTAG, representatives of the LHC collaborations, CERN IT, and experts in the field of Collaborative Tools

    Pseudorapidity and centrality dependence of the collective flow of charged particles in Au+Au collisions at sqrt{s_NN} = 130 GeV

    Full text link
    This paper describes the measurement of collective flow for charged particles in Au+Au collisions at sqrt{s_NN}} = 130 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). An azimuthal anisotropy is observed in the charged particle hit distribution in the PHOBOS multiplicity detector. This anisotropy is presented over a wide range of pseudorapidity (eta) for the first time at this energy. The size of the anisotropy (v_{2}) is thought to probe the degree of equilibration achieved in these collisions. The result here,averaged over momenta and particle species, is observed to reach 7% for peripheral collisions at mid-rapidity, falling off with centrality and increasing |eta|. Data are presented as a function of centrality for |eta|<1.0 and as a function of eta, averaged over centrality, in the angular region -5.0<eta<5.3. These results call into question the common assumption of longitudinal boost invariance over a large region of rapidity in RHIC collisions.Comment: 5 pages, 4 figures, submitted to Physical Review Letter

    Run 2 Upgrades to the CMS Level-1 Calorimeter Trigger

    Get PDF
    The CMS Level-1 calorimeter trigger is being upgraded in two stages to maintain performance as the LHC increases pile-up and instantaneous luminosity in its second run. In the first stage, improved algorithms including event-by-event pile-up corrections are used. New algorithms for heavy ion running have also been developed. In the second stage, higher granularity inputs and a time-multiplexed approach allow for improved position and energy resolution. Data processing in both stages of the upgrade is performed with new, Xilinx Virtex-7 based AMC cards.Comment: 10 pages, 7 figure

    Nucleon-Gold Collisions at 200 AGeV Using Tagged d+Au Interactions in PHOBOS

    Get PDF
    Forward calorimetry in the PHOBOS detector has been used to study charged hadron production in d+Au, p+Au and n+Au collisions at sqrt(s_nn) = 200 GeV. The forward proton calorimeter detectors are described and a procedure for determining collision centrality with these detectors is detailed. The deposition of energy by deuteron spectator nucleons in the forward calorimeters is used to identify p+Au and n+Au collisions in the data. A weighted combination of the yield of p+Au and n+Au is constructed to build a reference for Au+Au collisions that better matches the isospin composition of the gold nucleus. The p_T and centrality dependence of the yield of this improved reference system is found to match that of d+Au. The shape of the charged particle transverse momentum distribution is observed to extrapolate smoothly from pbar+p to central d+Au as a function of the charged particle pseudorapidity density. The asymmetry of positively- and negatively-charged hadron production in p+Au is compared to that of n+Au. No significant asymmetry is observed at mid-rapidity. These studies augment recent results from experiments at the LHC and RHIC facilities to give a more complete description of particle production in p+A and d+A collisions, essential for the understanding the medium produced in high energy nucleus-nucleus collisions.Comment: 17 pages, 18 figure

    Energy dependence of particle multiplicities in central Au+Au collisions

    Full text link
    We present the first measurement of the pseudorapidity density of primary charged particles in Au+Au collisions at sqrt(s_NN) = 200GeV. For the 6% most central collisions, we obtain dN_ch/deta|_|eta|<1 = 650 +/- 35 (syst). Compared to collisions at sqrt(s_NN) = 130GeV, the highest energy studied previously, an increase by a factor of 1.14 +/- 0.05 is found. The energy dependence of the pseudorapidity density is discussed in comparison with data from proton-induced collisions and theoretical predictions.Comment: 4 pages, 6 figures, submitted to PR
    • …