1,724 research outputs found

    Exploring the Retention of Students Studying Higher Education at Partner Colleges

    Get PDF
    The study considers the retention of 708 students studying for higher education awards at further education colleges in 2008-2009. The study challenges the relevance of literature on retention at higher education institutions, to students studying at partner colleges. Using data provided on registration and end of year status, the study considers individual factors identified by Yorke & Longden (2008) that relate to withdrawal in the first year of study. The findings of the study suggest that the diversity of students and high degree of variability between courses, means that the institutional habitus (Thomas 2002) of partner colleges is highly contextual. Consequently, the relationship between individual factors and withdrawal is seen as both complex and contextual

    Evaluation of Asphaltenes Deposition Inhibition Factors in Heavy Crude Oil Pipelines

    Get PDF
    Asphaltenes deposition is considered as Achilles’s heel in the oil industry. The nucleation, precipitation and deposition of asphaltenes reduce the production rate significantly in affected wells and sometimes it can completely block the flow by plugging the flowlines, tubing and process facilities, in severe cases. This chapter evaluates the extrinsic and the intrinsic (thermodynamic) factors within the heavy crude oil production system. The main consequences of asphaltenes deposition are discussed such as the solvent-to-crude oil dilution ratio, crude oil physical properties (cloud point, pour point and API gravity), chemical solvent type (carbon number, functional group), agitation time and temperature changes. This chapter is expected to become the means for understanding the factors affecting the asphaltenes nucleation, precipitation and deposition

    Direct Gas Thickener

    Get PDF
    Direct gas thickening technique has been developed to control the gas mobility in the miscible gas injection process for enhanced oil recovery. This technique involves increasing the viscosity of the injected gas by adding chemicals that exhibit good solubility in common gasses, such as CO2 or hydrocarbon (HC) solvents. This chapter presents a review of the latest attempts to thicken CO2 and/or hydrocarbon gases using various chemical additives, which can be broadly categorised into polymeric, conventional oligomers, and small-molecule self-interacting compounds. In an ideal situation, chemical compounds must be soluble in the dense CO2 or hydrocarbon solvents and insoluble in both crude oil and brine at reservoir conditions. However, it has been recognised that the use of additives with extraordinary molecular weights for the above purpose would be quite challenging since most of the supercritical fluids are very stable with reduced properties as solvents due to the very low dielectric constant, lack of dipole momentum, and low density. Therefore, one way to attain adequate solubility is to elevate the system pressure and temperature because such conditions give rise to the intermolecular forces between segments or introduce functional groups that undergo self-interacting or intermolecular interactions in the oligomer molecular chains to form a viscosity-enhancing supramolecular network structure in the solution. According to this review, some of the polymers tested to date, such as polydimethylsiloxane, polyfluoroacrylate styrene, and poly(1,1-dihydroperfluorooctyl acrylate), may induce a significant increase of the solvent viscosity at high concentrations. However, the cost and environmental constraints of these materials have made the field application of these thickeners unfeasible. Until now, thickeners composed of small molecules have shown little success to thicken CO2, because CO2 is a weak solvent due to its ionic and polar characteristics. However, these thickeners have resulted in promising outcomes when used in light alkane solvents

    Targeting metastatic colorectal cancer with immune oncological therapies

    Get PDF
    Metastatic colorectal cancer carries poor prognosis, and current therapeutic regimes convey limited improvements in survival and high rates of detrimental side effects in patients that may not stand to benefit. Immunotherapy has revolutionised cancer treatment by restoring antitumoural mechanisms. However, the efficacy in metastatic colorectal cancer, is limited. A literature search was performed using Pubmed (Medline), Web of Knowledge, and Embase. Search terms included combinations of immunotherapy and metastatic colorectal cancer, primarily focusing on clinical trials in humans. Analysis of these studies included status of MMR/MSS, presence of combination strategies, and disease control rate and median overall survival. Evidence shows that immune checkpoint inhibitors, such as anti-PD1 and anti-PD-L1, show efficacy in less than 10% of patients with microsatellite stable, MMR proficient colorectal cancer. In the small subset of patients with microsatellite unstable, MMR deficient cancers, response rates were 40–50%. Combination strategies with immunotherapy are under investigation but have not yet restored antitumoural mechanisms to permit durable disease regression. Immunotherapy provides the potential to offer additional strategies to established chemotherapeutic regimes in metastatic colorectal cancer. Further research needs to establish which adjuncts to immune checkpoint inhibition can unpick resistance, and better predict which patients are likely to respond to individualised therapies to not just improve response rates but to temper unwarranted side effects
    • …