385,230 research outputs found

    Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling

    Get PDF
    Copyright @ 2000 IEEEThis paper presents a constraint satisfaction adaptive neural network, together with several heuristics, to solve the generalized job-shop scheduling problem, one of NP-complete constraint satisfaction problems. The proposed neural network can be easily constructed and can adaptively adjust its weights of connections and biases of units based on the sequence and resource constraints of the job-shop scheduling problem during its processing. Several heuristics that can be combined with the neural network are also presented. In the combined approaches, the neural network is used to obtain feasible solutions, the heuristic algorithms are used to improve the performance of the neural network and the quality of the obtained solutions. Simulations have shown that the proposed neural network and its combined approaches are efficient with respect to the quality of solutions and the solving speed.This work was supported by the Chinese National Natural Science Foundation under Grant 69684005 and the Chinese National High-Tech Program under Grant 863-511-9609-003, the EPSRC under Grant GR/L81468

    Installing fiber insulation

    Get PDF
    A method for installing fragile, high temperature insulation batting in an elongated cavity or in a resilient wire sleeve to form a resilient seal. The batting is preformed to rough dimensions and wrapped in a plastic film, the film being of a material which is fugitive at a high temperature. The film is heat sealed and trimmed to form a snugly fit skin which overlaps at least at one end to permit attachment of a pull cord. The film absorbs the tensile force of pulling the film enclosed batting through the cavity or wire mesh sleeve and is subsequently driven off by high temperature baking, leaving only the insulation in the cavity or wire mesh sleeve

    A multi-agent based evolutionary algorithm in non-stationary environments

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2008 IEEEIn this paper, a multi-agent based evolutionary algorithm (MAEA) is introduced to solve dynamic optimization problems. The agents simulate living organism features and co-evolve to find optimum. All agents live in a lattice like environment, where each agent is fixed on a lattice point. In order to increase the energy, agents can compete with their neighbors and can also acquire knowledge based on statistic information. In order to maintain the diversity of the population, the random immigrants and adaptive primal dual mapping schemes are used. Simulation experiments on a set of dynamic benchmark problems show that MAEA can obtain a better performance in non-stationary environments in comparison with several peer genetic algorithms.This work was suported by the Key Program of National Natural Science Foundation of China under Grant No. 70431003, the Science Fund for Creative Research Group of the National Natural Science Foundation of China under Grant No. 60521003, the National Science and Technology Support Plan of China under Grant No. 2006BAH02A09, and the Engineering and Physical Sciences Research Council of the United Kingdom under Grant No. EP/E060722/1

    Adaptive primal-dual genetic algorithms in dynamic environments

    Get PDF
    This article is placed here with permission of IEEE - Copyright @ 2010 IEEERecently, there has been an increasing interest in applying genetic algorithms (GAs) in dynamic environments. Inspired by the complementary and dominance mechanisms in nature, a primal-dual GA (PDGA) has been proposed for dynamic optimization problems (DOPs). In this paper, an important operator in PDGA, i.e., the primal-dual mapping (PDM) scheme, is further investigated to improve the robustness and adaptability of PDGA in dynamic environments. In the improved scheme, two different probability-based PDM operators, where the mapping probability of each allele in the chromosome string is calculated through the statistical information of the distribution of alleles in the corresponding gene locus over the population, are effectively combined according to an adaptive Lamarckian learning mechanism. In addition, an adaptive dominant replacement scheme, which can probabilistically accept inferior chromosomes, is also introduced into the proposed algorithm to enhance the diversity level of the population. Experimental results on a series of dynamic problems generated from several stationary benchmark problems show that the proposed algorithm is a good optimizer for DOPs.This work was supported in part by the National Nature Science Foundation of China (NSFC) under Grant 70431003 and Grant 70671020, by the National Innovation Research Community Science Foundation of China under Grant 60521003, by the National Support Plan of China under Grant 2006BAH02A09, by the Engineering and Physical Sciences Research Council (EPSRC) of U.K. under Grant EP/E060722/1, and by the Hong Kong Polytechnic University Research Grants under Grant G-YH60

    Particle swarm optimization with composite particles in dynamic environments

    Get PDF
    This article is placed here with the permission of IEEE - Copyright @ 2010 IEEEIn recent years, there has been a growing interest in the study of particle swarm optimization (PSO) in dynamic environments. This paper presents a new PSO model, called PSO with composite particles (PSO-CP), to address dynamic optimization problems. PSO-CP partitions the swarm into a set of composite particles based on their similarity using a "worst first" principle. Inspired by the composite particle phenomenon in physics, the elementary members in each composite particle interact via a velocity-anisotropic reflection scheme to integrate valuable information for effectively and rapidly finding the promising optima in the search space. Each composite particle maintains the diversity by a scattering operator. In addition, an integral movement strategy is introduced to promote the swarm diversity. Experiments on a typical dynamic test benchmark problem provide a guideline for setting the involved parameters and show that PSO-CP is efficient in comparison with several state-of-the-art PSO algorithms for dynamic optimization problems.This work was supported in part by the Key Program of the National Natural Science Foundation (NNSF) of China under Grant 70931001 and 70771021, the Science Fund for Creative Research Group of the NNSF of China under Grant 60821063 and 70721001, the Ph.D. Programs Foundation of the Ministry of education of China under Grant 200801450008, and by the Engineering and Physical Sciences Research Council of U.K. under Grant EP/E060722/1

    Genetic algorithm and neural network hybrid approach for job-shop scheduling

    Get PDF
    Copyright @ 1998 ACTA PressThis paper proposes a genetic algorithm (GA) and constraint satisfaction adaptive neural network (CSANN) hybrid approach for job-shop scheduling problems. In the hybrid approach, GA is used to iterate for searching optimal solutions, CSANN is used to obtain feasible solutions during the iteration of genetic algorithm. Simulations have shown the valid performance of the proposed hybrid approach for job-shop scheduling with respect to the quality of solutions and the speed of calculation.This research is supported by the National Nature Science Foundation and National High -Tech Program of P. R. China

    The significance of information visualisation based on the symbolic semantics of Peking Opera Painted Faces (POPF)

    Get PDF
    Peking Opera as a branch of Chinese traditional cultures and arts has a very distinct colourful facial make-up for all actors in the stage performance. Such make-up is stylised in typical cultural elements which all combined together to form the painted faces to describe and symbolise the background and characteristic of specific roles. The Peking Opera Painted Faces (POPF) was taken as an example to study the information visualisation and transmission, to see how information and meanings can be effectively expressed through the colourful visual elements. In order to identify the state-of-the-art in the related Culture Inspired Design as one of the design principles, the literature resources including illustrations of POPF were investigated, and also the semantic features and elements of other similar forms of modern design which has close connection with multiple aspects of social life. The study has proved that the visual elements of POPF played the most effective role in the information transmittion. Future application of this culture resource may include product design, interaction design, system design and service design around the world
    corecore