48 research outputs found

    Spin structures on loop spaces that characterize string manifolds

    Full text link
    Classically, a spin structure on the loop space of a manifold is a lift of the structure group of the looped frame bundle from the loop group to its universal central extension. Heuristically, the loop space of a manifold is spin if and only if the manifold itself is a string manifold, against which it is well-known that only the if-part is true in general. In this article we develop a new version of spin structures on loop spaces that exists if and only if the manifold is string, as desired. This new version consists of a classical spin structure plus a certain fusion product related to loops of frames in the manifold. We use the lifting gerbe theory of Carey-Murray, recent results of Stolz-Teichner on loop spaces, and some own results about string geometry and Brylinski-McLaughlin transgression.Comment: 30 pages. v2 comes with some minor corrections and improvement

    Connections on non-abelian Gerbes and their Holonomy

    Get PDF
    We introduce an axiomatic framework for the parallel transport of connections on gerbes. It incorporates parallel transport along curves and along surfaces, and is formulated in terms of gluing axioms and smoothness conditions. The smoothness conditions are imposed with respect to a strict Lie 2-group, which plays the role of a band, or structure 2-group. Upon choosing certain examples of Lie 2-groups, our axiomatic framework reproduces in a systematical way several known concepts of gerbes with connection: non-abelian differential cocycles, Breen-Messing gerbes, abelian and non-abelian bundle gerbes. These relationships convey a well-defined notion of surface holonomy from our axiomatic framework to each of these concrete models. Till now, holonomy was only known for abelian gerbes; our approach reproduces that known concept and extends it to non-abelian gerbes. Several new features of surface holonomy are exposed under its extension to non-abelian gerbes; for example, it carries an action of the mapping class group of the surface.Comment: 57 pages. v1 is preliminary. v2 is completely rewritten, former Sections 1 and 2 have been moved into a separate paper (arxiv:1303.4663), and the discussion of non-abelian surface holonomy has been improved and extended. v3 is the final and published version with a few minor correction

    Fusion of implementers for spinors on the circle

    Full text link
    We consider the space of odd spinors on the circle, and a decomposition into spinors supported on either the top or on the bottom half of the circle. If an operator preserves this decomposition, and acts on the bottom half in the same way as a second operator acts on the top half, then the fusion of both operators is a third operator acting on the top half like the first, and on the bottom half like the second. Fusion restricts to the Banach Lie group of restricted orthogonal operators, which supports a central extension of implementers on a Fock space. In this article, we construct a lift of fusion to this central extension. Our construction uses Tomita-Takesaki theory for the Clifford-von Neumann algebras of the decomposed space of spinors. Our motivation is to obtain an operator-algebraic model for the basic central extension of the loop group of the spin group, on which the fusion of implementers induces a fusion product in the sense considered in the context of transgression and string geometry. In upcoming work we will use this model to construct a fusion product on a spinor bundle on the loop space of a string manifold, completing a construction proposed by Stolz and Teichner.Comment: 49 page

    Transgression of D-branes

    Full text link
    Closed strings can be seen either as one-dimensional objects in a target space or as points in the free loop space. Correspondingly, a B-field can be seen either as a connection on a gerbe over the target space, or as a connection on a line bundle over the loop space. Transgression establishes an equivalence between these two perspectives. Open strings require D-branes: submanifolds equipped with vector bundles twisted by the gerbe. In this paper we develop a loop space perspective on D-branes. It involves bundles of simple Frobenius algebras over the branes, together with bundles of bimodules over spaces of paths connecting two branes. We prove that the classical and our new perspectives on D-branes are equivalent. Further, we compare our loop space perspective to Moore-Segal/Lauda-Pfeiffer data for open-closed 2-dimensional topological quantum field theories, and exhibit it as a smooth family of reflection-positive, colored knowledgable Frobenius algebras