14,074 research outputs found

### Being a non-drinking student: an interpretative phenomenological analysis

Recent research suggests that safer student alcohol consumption might be assisted by understanding how social occasions are managed by non-drinkers. In-depth, semi-structured interviews with five 19-22 year old non-drinking English undergraduates were subjected to interpretative phenomenological analysis (IPA). We present five inter-linked themes: âliving with challenges to non drinkingâ; âseeing what goes on in drinking environmentsâ; âdealing with conversations about non-drinking (âmaking excuses vs. coming outâ)â; âknowing which
friends care about youâ; and âthe importance of withholding âlegroomâ for peer pressureâ. Participants felt under persistent peer scrutiny (as a form of peer pressure) and could feel alienated in drinking environments. Talking about non-drinking was characterised by whether to âcome outâ (as a non-drinker) or âfake itâ (e.g., âIâm on antibioticsâ). Loyal friendships were reported as particularly important in this context. The decision not to drink was experienced as providing a successful buffer to peer pressure for former drinkers. Our findings unsettle
traditional health promotion campaigns which advocate moderate drinking among students without always suggesting how it might be most successfully accomplished, and offer
tentative guidance on how non-drinking during specific social occasions might be managed more successfully. Findings are discussed in relation to extant literature and future research directions are suggested

### Tolman mass, generalized surface gravity, and entropy bounds

In any static spacetime the quasi-local Tolman mass contained within a volume
can be reduced to a Gauss-like surface integral involving the flux of a
suitably defined generalized surface gravity. By introducing some basic
thermodynamics and invoking the Unruh effect one can then develop elementary
bounds on the quasi-local entropy that are very similar in spirit to the
holographic bound, and closely related to entanglement entropy.Comment: V1: 4 pages. Uses revtex4-1; V2: Three references added; V3: Some
notational changes for clarity; introductory paragraph rewritten; no physics
changes. This version accepted for publication in Physical Review Letter

### Tolman wormholes violate the strong energy condition

For an arbitrary Tolman wormhole, unconstrained by symmetry, we shall define
the bounce in terms of a three-dimensional edgeless achronal spacelike
hypersurface of minimal volume. (Zero trace for the extrinsic curvature plus a
"flare-out" condition.) This enables us to severely constrain the geometry of
spacetime at and near the bounce and to derive general theorems regarding
violations of the energy conditions--theorems that do not involve geodesic
averaging but nevertheless apply to situations much more general than the
highly symmetric FRW-based subclass of Tolman wormholes. [For example: even
under the mildest of hypotheses, the strong energy condition (SEC) must be
violated.] Alternatively, one can dispense with the minimal volume condition
and define a generic bounce entirely in terms of the motion of test particles
(future-pointing timelike geodesics), by looking at the expansion of their
timelike geodesic congruences. One re-confirms that the SEC must be violated at
or near the bounce. In contrast, it is easy to arrange for all the other
standard energy conditions to be satisfied.Comment: 8 pages, ReV-TeX 3.

### Analogue model for quantum gravity phenomenology

So called "analogue models" use condensed matter systems (typically
hydrodynamic) to set up an "effective metric" and to model curved-space quantum
field theory in a physical system where all the microscopic degrees of freedom
are well understood. Known analogue models typically lead to massless minimally
coupled scalar fields. We present an extended "analogue space-time" programme
by investigating a condensed-matter system - in and beyond the hydrodynamic
limit - that is in principle capable of simulating the massive Klein-Gordon
equation in curved spacetime. Since many elementary particles have mass, this
is an essential step in building realistic analogue models, and an essential
first step towards simulating quantum gravity phenomenology. Specifically, we
consider the class of two-component BECs subject to laser-induced transitions
between the components, and we show that this model is an example for Lorentz
invariance violation due to ultraviolet physics. Furthermore our model suggests
constraints on quantum gravity phenomenology in terms of the "naturalness
problem" and "universality issue".Comment: Talk given at 7th Workshop on Quantum Field Theory Under the
Influence of External Conditions (QFEXT 05), Barcelona, Catalonia, Spain, 5-9
Sep 200

### Bound Modes in Dielectric Microcavities

We demonstrate how exactly bound cavity modes can be realized in dielectric
structures other than 3d photonic crystals. For a microcavity consisting of
crossed anisotropic layers, we derive the cavity resonance frequencies, and
spontaneous emission rates. For a dielectric structure with dissipative loss
and central layer with gain, the beta factor of direct spontaneous emission
into a cavity mode and the laser threshold is calculated.Comment: 5 pages, 3 figure

### Gravitational vacuum polarization III: Energy conditions in the (1+1) Schwarzschild spacetime

Building on a pair of earlier papers, I investigate the various point-wise
and averaged energy conditions for the quantum stress-energy tensor
corresponding to a conformally-coupled massless scalar field in the in the
(1+1)-dimensional Schwarzschild spacetime. Because the stress-energy tensors
are analytically known, I can get exact results for the Hartle--Hawking,
Boulware, and Unruh vacua. This exactly solvable model serves as a useful
sanity check on my (3+1)-dimensional investigations wherein I had to resort to
a mixture of analytic approximations and numerical techniques. Key results in
(1+1) dimensions are: (1) NEC is satisfied outside the event horizon for the
Hartle--Hawking vacuum, and violated for the Boulware and Unruh vacua. (2) DEC
is violated everywhere in the spacetime (for any quantum state, not just the
standard vacuum states).Comment: 7 pages, ReV_Te

### Breaking down the delta wing vortex: The role of vorticity in the breakdown process

Experimental x-wire measurements of the flowfield above a 70 and 75 deg flat plate delta wing were performed at a Reynolds number of 250,000. Grids were taken normal to the wing at various chordwise locations for angles of attack of 20 and 30 deg. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core and on chordwise location was also examined. The effects of nondimensionalization in comparison with other experimental data is made. The results indicate that the circulation distribution scales with the local semispan and grows in a nearly linear fashion in the chordwise direction. The spanwise distribution of axial vorticity is severely altered through the breakdown. The axial vorticity components with a negative sense, such as that found in the secondary vortex, seem to remain unaffected by changes in wind sweep or angle of attack, in direct contrast to the positive components. In addition, the inclusion of the local wing geometry into a previously derived correlation parameter allows the circulation of growing leading edge vortex flows to be reduced into a single curve

### Cosmological milestones and energy conditions

Until recently, the physically relevant singularities occurring in FRW
cosmologies had traditionally been thought to be limited to the "big bang", and
possibly a "big crunch". However, over the last few years, the zoo of
cosmological singularities considered in the literature has become considerably
more extensive, with "big rips" and "sudden singularities" added to the mix, as
well as renewed interest in non-singular cosmological events such as "bounces"
and "turnarounds". In this talk, we present an extensive catalogue of such
cosmological milestones, both at the kinematical and dynamical level. First,
using generalized power series, purely kinematical definitions of these
cosmological events are provided in terms of the behaviour of the scale factor
a(t). The notion of a "scale-factor singularity" is defined, and its relation
to curvature singularities (polynomial and differential) is explored. Second,
dynamical information is extracted by using the Friedmann equations (without
assuming even the existence of any equation of state) to place constraints on
whether or not the classical energy conditions are satisfied at the
cosmological milestones. Since the classification is extremely general, and
modulo certain technical assumptions complete, the corresponding results are to
a high degree model-independent.Comment: 8 pages, 1 table, conference proceedings for NEB XII conference in
Nafplio, Greec

### The Hubble series: Convergence properties and redshift variables

In cosmography, cosmokinetics, and cosmology it is quite common to encounter
physical quantities expanded as a Taylor series in the cosmological redshift z.
Perhaps the most well-known exemplar of this phenomenon is the Hubble relation
between distance and redshift. However, we now have considerable high-z data
available, for instance we have supernova data at least back to redshift
z=1.75. This opens up the theoretical question as to whether or not the Hubble
series (or more generally any series expansion based on the z-redshift)
actually converges for large redshift? Based on a combination of mathematical
and physical reasoning, we argue that the radius of convergence of any series
expansion in z is less than or equal to 1, and that z-based expansions must
break down for z>1, corresponding to a universe less than half its current
size.
Furthermore, we shall argue on theoretical grounds for the utility of an
improved parameterization y=z/(1+z). In terms of the y-redshift we again argue
that the radius of convergence of any series expansion in y is less than or
equal to 1, so that y-based expansions are likely to be good all the way back
to the big bang y=1, but that y-based expansions must break down for y<-1, now
corresponding to a universe more than twice its current size.Comment: 15 pages, 2 figures, accepted for publication in Classical and
Quantum Gravit

### Sonoluminescence and the QED vacuum

In this talk I shall describe an extension of the quantum-vacuum approach to
sonoluminescence proposed several years ago by J.Schwinger. We shall first
consider a model calculation based on Bogolubov coefficients relating the QED
vacuum in the presence of an expanded bubble to that in the presence of a
collapsed bubble. In this way we shall derive an estimate for the spectrum and
total energy emitted. This latter will be shown to be proportional to the
volume of space over which the refractive index changes, as Schwinger
predicted. After this preliminary check we shall deal with the physical
constraints that any viable dynamical model for SL has to satisfy in order to
fit the experimental data. We shall emphasize the importance of the timescale
of the change in refractive index. This discussion will led us to propose a
somewhat different version of dynamical Casimir effect in which the change in
volume of the bubble is no longer the only source for the change in the
refractive index.Comment: 15 pages, 1 figure, uses sprocl.sty. Talk at the 4th Workshop on
Quantum Field Theory Under the Influence of External Conditions, Leipzig,
14-18 September, 199

- âŠ