3,356 research outputs found

    Tradeoff Analysis of Delay-Power-CSIT Quality of Dynamic BackPressure Algorithm for Energy Efficient OFDM Systems

    Full text link
    In this paper, we analyze the fundamental power-delay tradeoff in point-to-point OFDM systems under imperfect channel state information quality and non-ideal circuit power. We consider the dynamic back- pressure (DBP) algorithm, where the transmitter determines the rate and power control actions based on the instantaneous channel state information (CSIT) and the queue state information (QSI). We exploit a general fluid queue dynamics using a continuous time dynamic equation. Using the sample-path approach and renewal theory, we decompose the average delay in terms of multiple unfinished works along a sample path, and derive an upper bound on the average delay under the DBP power control, which is asymptotically accurate at small delay regime. We show that despite imperfect CSIT quality and non-ideal circuit power, the average power (P) of the DBP policy scales with delay (D) as P = O(Dexp(1/D)) at small delay regime. While the impacts of CSIT quality and circuit power appears as the coefficients of the scaling law, they may be significant in some operating regimes.Comment: 30 page

    Investigation of dynamic ground effect

    Get PDF
    An experimental investigation of dynamic ground effect was conducted in the Univ. of Kansas wind tunnel using delta wings of 60, 70, 75 deg sweep; the XB-70 wing; and the F-104A wing. Both static and dynamic tests were made. Test data were compared to other test data, including dynamic flight test data of the XB-70 and F-104A. Limited flow visualization test were conducted. A significant dynamic effect was found for highly swept delta wings

    Elastocapillary Levelling of Thin Viscous Films on Soft Substrates

    Get PDF
    A thin liquid film with non-zero curvature at its free surface spontaneously flows to reach a flat configuration, a process driven by Laplace pressure gradients and resisted by the liquid's viscosity. Inspired by recent progresses on the dynamics of liquid droplets on soft substrates, we here study the relaxation of a viscous film supported by an elastic foundation. Experiments involve thin polymer films on elastomeric substrates, where the dynamics of the liquid-air interface is monitored using atomic force microscopy. A theoretical model that describes the coupled evolution of the solid-liquid and the liquid-air interfaces is also provided. In this soft-levelling configuration, Laplace pressure gradients not only drive the flow, but they also induce elastic deformations on the substrate that affect the flow and the shape of the liquid-air interface itself. This process represents an original example of elastocapillarity that is not mediated by the presence of a contact line. We discuss the impact of the elastic contribution on the levelling dynamics and show the departure from the classical self-similarities and power laws observed for capillary levelling on rigid substrates

    Classification of Genes and Putative Biomarker Identification Using Distribution Metrics on Expression Profiles

    Get PDF
    BACKGROUND: Identification of genes with switch-like properties will facilitate discovery of regulatory mechanisms that underlie these properties, and will provide knowledge for the appropriate application of Boolean networks in gene regulatory models. As switch-like behavior is likely associated with tissue-specific expression, these gene products are expected to be plausible candidates as tissue-specific biomarkers. METHODOLOGY/PRINCIPAL FINDINGS: In a systematic classification of genes and search for biomarkers, gene expression profiles (GEPs) of more than 16,000 genes from 2,145 mouse array samples were analyzed. Four distribution metrics (mean, standard deviation, kurtosis and skewness) were used to classify GEPs into four categories: predominantly-off, predominantly-on, graded (rheostatic), and switch-like genes. The arrays under study were also grouped and examined by tissue type. For example, arrays were categorized as 'brain group' and 'non-brain group'; the Kolmogorov-Smirnov distance and Pearson correlation coefficient were then used to compare GEPs between brain and non-brain for each gene. We were thus able to identify tissue-specific biomarker candidate genes. CONCLUSIONS/SIGNIFICANCE: The methodology employed here may be used to facilitate disease-specific biomarker discovery

    A pilot study evaluating concordance between blood-based and patient-matched tumor molecular testing within pancreatic cancer patients participating in the Know Your Tumor (KYT) initiative

    Get PDF
    Recent improvements in next-generation sequencing (NGS) technology have enabled detection of biomarkers in cell-free DNA in blood and may ultimately replace invasive tissue biopsies. However, a better understanding of the performance of blood-based NGS assays is needed prior to routine clinical use. As part of an IRBapproved molecular profiling registry trial of pancreatic ductal adenocarcinoma (PDA) patients, we facilitated blood-based NGS testing of 34 patients from multiple community-based and high-volume academic oncology practices. 23 of these patients also underwent traditional tumor tissue-based NGS testing. cfDNA was not detected in 9/34 (26%) patients. Overall concordance between blood and tumor tissue NGS assays was low, with only 25% sensitivity of blood-based NGS for tumor tissue NGS. Mutations in KRAS, the major PDA oncogene, were only detected in 10/34 (29%) blood samples, compared to 20/23 (87%) tumor tissue biopsies. The presence of mutations in circulating DNA was associated with reduced overall survival (54% in mutation-positive versus 90% in mutation-negative). Our results suggest that in the setting of previously treated, advanced PDA, liquid biopsies are not yet an adequate substitute for tissue biopsies. Further refinement in defining the optimal patient population and timing of blood sampling may improve the value of a blood-based test. © Pishvaian et al

    Light Flicker Detector

    Get PDF
    Light flickering can be detrimental to humans even if imperceptible. Headaches, migraine, and/or eye strain can result from exposure to flickering light. This disclosure describes techniques to detect and monitor light flicker. An ambient light sensor detects flickering in environmental lighting. Environmental light intensity is measured over a wide spectrum covering the human perceptive range. The peak flicker frequencies (and their magnitudes), flicker percentages, etc. are determined. If a substantial amount of flicker (greater than a threshold) is detected, an alert is provided. Furthermore, auto-generated instructions enable users to determine the light source that is the source of flickering
    corecore