2 research outputs found

    Cell-Based Assays in Cancer Research

    Get PDF
    Cell growth is referred to as cell proliferation, that is, the increase in cell numbers during repeated cell division. Cell growth can be defined as the enlargement of cell volume, which might take place in the absence of cell division. Growth and reproduction are features of cells in all living organisms. All cells reproduce by dividing into two, with each parental cell giving rise to two daughter cells each time they divide. Various genes are involved in the control of cell division and growth. Reproduction in unicellular organisms are referred to cell division and in multicellular organisms it is tissue growth and maintenance. Survival of the eukaryotes depends upon interactions between various cell types, that helps in the balanced distribution. This is achieved through the highly regulated process of cell proliferation. Knowledge in cell cycle is necessary to determine the best time to collect cells, to harvest cell products, or to move cells to a new growth environment. Cancer cells do not die at the natural point in a cell’s life cycle. Cancer cells occur as the results of cellular changes caused by the uncontrolled growth and division of cells. The chapter focuses on cancer cell maintenance, apoptosis, and its detection assays

    Cytotoxicity and Cell Viability Assessment of Biomaterials

    Get PDF
    Biocompatibility testing is essential for medical devices and pharmaceutical agents, regardless of their mechanical, physical, and chemical properties. These tests assess cytotoxic effects and acute systemic toxicity to ensure safety and effectiveness before clinical use. Cell viability, indicating the number of healthy cells in a sample, is determined through various assays that measure live-to-dead cell ratios. Cytotoxicity measures a substance’s potential for cell damage or death, and is evaluated through numerous assay methods based on different cell functions. Ensuring biocompatibility is crucial for the successful integration of medical devices and pharmaceuticals into clinical practice. As part of the evaluation process, researchers utilize a range of cell viability assays and cytotoxicity tests to assess the potential impact of these products on living cells. The results of these tests inform the optimization of cell culture conditions and drug candidates, as well as guide the development of safer, more effective medical devices. By thoroughly examining the interactions between devices, drugs, and biological systems, researchers aim to minimize the risk of adverse reactions and improve patient outcomes