2,703 research outputs found

    Pharmacokinetic analysis after implantation of everolimus-eluting self-expanding stents in the peripheral vasculature

    Get PDF
    Background: A novel self-expanding drug-eluting stent was designed to release everolimus 225 mu g/cm(2) to prevent restenosis following peripheral arterial intervention. The purpose of this study was to measure the pharmacokinetic profile of everolimus following stent implantation. Methods: One hundred four patients with symptomatic peripheral arterial disease underwent implantation of everolimus-eluting stents in the femoropopliteal arteries. In a prespecified subset of 26 patients, blood samples for assay of everolimus content were collected prior to stent implantation, at 1, 4, and 8 hours postprocedure, prior to discharge, and at 1 month postproccdure. Results: A total of 39 stents, ranging from 28 mm to 100 mm in length, were implanted in 26 patients, resulting in a total delivered everolimus dose range of 3.0 to 7.6 mg. Following the procedure, the maximum observed everolimus blood concentrations (C-max) varied from 1.83 +/- 0.05 ng/mL after implantation of a single 80-mm stent to 4.66 +/- 1.78 ng/mL after implantation of two 100-mm stents. The mean time to peak concentration (T-max) varied from 6.8 hours to 35 hours. The pharmacokinetics of everolimus were dose-proportional in that dose-normalized C-max and area under the curve values were constant over the studied dose range. Conclusions: After implantation of everolimus-eluting self-expanding stents in the femoropopliteal arteries, systemic blood concentrations of everolimus are predictable and considerably lower than blood concentrations observed following safe oral administration of everolimus

    Inositol 1,4,5-trisphosphate receptor 1, a widespread Ca2+ channel, is a novel substrate of polo-like kinase 1 in eggs

    Get PDF
    AbstractTo initiate embryo development, the sperm induces in the egg release of intracellular calcium ([Ca2+]i). During oocyte maturation, the inositol 1,4,5-trisphosphate receptor (IP3R1), the channel implicated, undergoes modifications that enhance its function. We found that IP3R1 becomes phosphorylated during maturation at an MPM-2 epitope and that this persists until the fertilization-associated [Ca2+]i responses cease. We also reported that maturation without ERK activity diminishes IP3R1 MPM-2 reactivity and [Ca2+]i responses. Here, we show that IP3R1 is a novel target for Polo-like kinase1 (Plk1), a conserved M-phase kinase, which phosphorylates it at an MPM-2 epitope. Plk1 and IP3R1 interact in an M-phase preferential manner, and they exhibit close co-localization in the spindle/spindle poles area. This co-localization is reduced in the absence of ERK activity, as the ERK pathway regulates spindle organization and IP3R1 cortical re-distribution. We propose that IP3R1 phosphorylation by Plk1, and possibly by other M-phase kinases, underlies the delivery of spatially and temporally regulated [Ca2+]i signals during meiosis/mitosis and cytokinesis
    corecore