349 research outputs found

    Replication characteristics of porcine reproductive and respiratory syndrome virus (PRRSV) European subtype 1 (Lelystad) and subtype 3 (Lena) strains in nasal mucosa and cells of the monocytic lineage: indications for the use of new receptors of PRRSV (Lena)

    Get PDF
    Recently, it has been demonstrated that subtype 3 strains of European type porcine reproductive and respiratory syndrome virus (PRRSV) are more virulent/pathogenic than subtype 1 strains. This points to differences in the pathogenesis. In the present study, a new polarized nasal mucosa explant system was used to study the invasion of the low virulent subtype 1 PRRSV strain Lelystad (LV) and the highly virulent subtype 3 PRRSV strain Lena at the portal of entry. Different cell types of the monocytic lineage (alveolar macrophages (PAM), cultured blood monocytes and monocyte-derived dendritic cells (moDC)) were enclosed to examine replication kinetics of both strains in their putative target cells. At 0, 12, 24, 48 and 72 hours post inoculation (hpi), virus production was analyzed and the infected cells were quantified and identified. Lena replicated much more efficiently than LV in the nasal mucosa explants and to a lesser extent in PAM. Differences in replication were not found in monocytes and moDC. Confocal microscopy demonstrated that for LV, almost all viral antigen positive cells were CD163+Sialoadhesin (Sn)+, which were mainly located in the lamina propria of the respiratory mucosa. In Lena-infected nasal mucosa, CD163+Sn+, CD163+Sn- and to a lesser extent CD163-Sn- monocytic subtypes were involved in infection. CD163+Sn- cells were mostly located within or in the proximity of the epithelium. Our results show that, whereas LV replicates in a restricted subpopulation of CD163+Sn+ monocytic cells in the upper respiratory tract, Lena hijacks a broader range of subpopulations to spread within the mucosa. Replication in CD163+Sn- cells suggests that an alternative entry receptor may contribute to the wider tropism of Lena

    Time for a plant structural economics spectrum

    Get PDF
    We argue that tree and crown structural diversity can and should be integrated in the whole-plant economics spectrum. Ecologists have found that certain functional trait combinations have been more viable than others during evolution, generating a trait trade-off continuum which can be summarized along a few axes of variation, such as the "worldwide leaf economics spectrum" and the "wood economics spectrum." However, for woody plants the crown structural diversity should be included as well in the recently introduced "global spectrum of plant form and function," which now merely focusses on plant height as structural factor. The recent revolution in terrestrial laser scanning (TLS) unlocks the possibility to describe the three dimensional structure of trees quantitatively with unprecedented detail. We demonstrate that based on TLS data, a multidimensional structural trait space can be constructed, which can be decomposed into a few descriptive axes or spectra. We conclude that the time has come to develop a "structural economics spectrum" for woody plants based on structural trait data across the globe. We make suggestions as to what structural features might lie on this spectrum and how these might help improve our understanding of tree form-function relationships

    Modelling understorey dynamics in temperate forests under global change : challenges and perspectives

    Get PDF
    The understorey harbours a substantial part of vascular plant diversity in temperate forests and plays an important functional role, affecting ecosystem processes such as nutrient cycling and overstorey regeneration. Global change, however, is putting these understorey communities on trajectories of change, potentially altering and reducing their functioning in the future. Developing mitigation strategies to safeguard the diversity and functioning of temperate forests in the future is challenging and requires improved predictive capacity. Process-based models that predict understorey community composition over time, based on first principles of ecology, have the potential to guide mitigation endeavours but such approaches are rare. Here, we review fourteen understorey modelling approaches that have been proposed during the last three decades. We evaluate their inclusion of mechanisms that are required to predict the impact of global change on understorey communities. We conclude that none of the currently existing models fully accounts for all processes that we deem important based on empirical and experimental evidence. Based on this review, we contend new models are needed to project the complex impacts of global change on forest understoreys. Plant functional traits should be central to such future model developments, as they drive community assembly processes and provide valuable information on the functioning of the understorey. Given the important role of the overstorey, a coupling of understorey models to overstorey models will be essential to predict the impact of global change on understorey composition and structure, and how it will affect the functioning of temperate forests in the future

    Decadal water balance of a temperate Scots pine forest (Pinus sylvestris L.) based on measurements and modelling

    Get PDF
    We examined the water balance components of an 80-year-old Scots pine (Pinus sylvestris L.) forest stand in the Campine region of Belgium over a ten year period using five very different approaches; our methods ranged from data intensive measurements to process model simulations. Specifically, we used the conservative ion method (CI), the Eddy Covariance technique (EC), an empirical model (WATBAL), and two process models that vary greatly in their temporal and spatial scaling, the ORCHIDEE global land-surface model and SECRETS a stand- to ecosystem-scale biogeochemical process model. Herein we used the EC technique as a standard for the evapotranspiration (ET) estimates. Using and evaluating process based models with data is extremely useful as models are the primary method for integration of small-scale, process level phenomena into comprehensive description of forest stand or ecosystem function. Results demonstrated that the two process models corresponded well to the seasonal patterns and yearly totals of ET from the EC approach. However, both WATBAL and CI approaches overestimated ET when compared to the EC estimates. We found significant relationships between several meteorological variables (i.e., vapour pressure deficit [VPD], mean air temperature [Tair], and global radiation [Rg]) and ET on monthly basis for all approaches. In contrast, few relationships were significant on annual basis. Independent of the method examined, ET exhibited low inter-annual variability. Consequently, drainage fluxes were highly correlated with annual precipitation for all approaches examined, except CI

    Terrestrial Laser Scanning to Detect Liana Impact on Forest Structure

    Get PDF
    Tropical forests are currently experiencing large-scale structural changes, including an increase in liana abundance and biomass. Higher liana abundance results in reduced tree growth and increased tree mortality, possibly playing an important role in the global carbon cycle. Despite the large amount of data currently available on lianas, there are not many quantitative studies on the influence of lianas on the vertical structure of the forest. We study the potential of terrestrial laser scanning (TLS) in detecting and quantifying changes in forest structure after liana cutting using a small scale removal experiment in two plots (removal plot and non-manipulated control plot) in a secondary forest in Panama. We assess the structural changes by comparing the vertical plant profiles and Canopy Height Models (CHMs) between pre-cut and post-cut scans in the removal plot. We show that TLS is able to detect the local structural changes in all the vertical strata of the plot caused by liana removal. Our study demonstrates the reproducibility of the TLS derived metrics for the same location confirming the applicability of TLS for continuous monitoring of liana removal plots to study the long-term impacts of lianas on forest structure. We therefore recommend to use TLS when implementing new large scale liana removal experiments, as the impact of lianas on forest structure will determine the aboveground competition for light between trees and lianas, which has important implications for the global carbon cycle

    Influence of springtime phenology on the ratio of soil respiration to total ecosystem respiration in a mixed temperate forest

    Get PDF
    Total ecosystem (Reco) and soil (Rs) respiration are important CO2 fluxes in the carbon balance of forests. Typically Rs accounts for between 30-80% of Reco, although variation in this ratio has been shown to occur, particularly at seasonal time scales. The objective of this study was to relate changes in Rs/Reco ratio to changing springtime phenological conditions in forest ecosystems. We used one year (2003) of automated and twelve years (1995-2006) of manual chamber-based measurements of Rs. Reco was determined using tower-based eddy covariance measurements for an oak-dominated mixed temperate forest at Harvard Forest, Petersham, MA, USA. Phenological data were obtained from field observations and the JRC fAPAR remote sensing product. The automated and eddy covariance data showed that springtime phenological events do influence the ratio of soil to total ecosystem respiration. During canopy development, Reco rose strongly, mainly the aboveground component, due to the formation of an increasing amount of respiring leaf tissue. An increase in Rs was observed after most of the canopy development, which is probably the consequence of a shift in allocation of photosynthate products from above- to belowground. This hypothesized allocation shift was also confirmed by the results of the twelve year manual chamber-based measurements

    Dynamische interactie tussen fotosynthese en BVOS emissies in bosecosystemen

    Get PDF
    Emissies van biogene vluchtige organische stoffen (BVOS), zoals isopreen, monoterpenen en sesquiterpenen, vormen een belangrijke bron van luchtvervuiling en dragen bij tot ozonvorming. Uit voorgaande studies blijkt dat deze emissies positief be√Įnvloed worden door licht en temperatuur. In het kader van dit onderzoek wordt nagegaan of ook fotosynthese een belangrijke interactie vertoont met BVOS-emissies. Continue en simultane metingen werden verricht met PTR-MS (metingen van BVOS-emissies) en IRGA (metingen van fotosynthese), beiden verbonden met cuvettes ge√Įnstalleerd op verschillende hoogtes op takken van een volwassen beuk (Fagus sylvatica L.) in het experimentele proefbos Aelmoeseneie, Gontrode van augustus tot oktober 2008. Ook werden microklimatologische parameters opgemeten voor cuvettes
    • ‚Ķ
    corecore