790 research outputs found

    Widespread distribution and a new recombinant species of Brazilian virus associated with cotton blue disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cotton blue disease (CBD), an important global cotton crop pathology responsible for major economic losses, is prevalent in the major cotton-producing states of Brazil. Typical CBD symptoms include stunting due to internodal shortening, leaf rolling, intense green foliage, and yellowing veins. Atypical CBD symptoms, including reddish and withered leaves, were also observed in Brazilian cotton fields in 2007. Recently, a <it>Polerovirus </it>named Cotton leafroll dwarf virus (CLRDV) was shown to be associated with CBD.</p> <p>Results</p> <p>To understand the distribution and genetic diversity of CLRDV in Brazil, we analyzed 23 CBD-symptomatic plants from susceptible cotton varieties originating from five of the six most important cotton-growing states, from 2004–2007. Here, we report on CLRDV diversity in plants with typical or atypical CBD symptoms by comparing viral coat protein, RNA polymerase (RdRp), and intergenic region genomic sequences.</p> <p>Conclusion</p> <p>The virus had a widespread distribution with a low genetic diversity; however, three divergent isolates were associated with atypical CBD symptoms. These divergent isolates had a CLRDV-related coat protein but a distinct RdRp sequence, and probably arose from recombination events. Based on the taxonomic rules for the family <it>Luteoviridae</it>, we propose that these three isolates represent isolates of a new species in the genus <it>Polerovirus</it>.</p

    A new, potent poly(ADP-ribose) polymerase inhibitor improves cardiac and vascular dysfunction associated with advanced aging

    Get PDF
    Increased production of reactive oxygen and nitrogen species has recently been implicated in the pathogenesis of cardiac and endothelial dysfunction associated with atherosclerosis, hypertension, and aging. Oxidant-induced cell injury triggers the activation of nuclear enzyme poly(ADP-ribose) polymerase (PARP), which in turn contributes to cardiac and vascular dysfunction in various pathophysiological conditions including diabetes, reperfusion injury, circulatory shock, and aging. Here, we investigated the effect of a new PARP inhibitor, INO-1001, on cardiac and endothelial dysfunction associated with advanced aging using Millar's new Aria pressure-volume conductance system and isolated aortic rings. Young adult (3 months old) and aging (24 months old) Fischer rats were treated for 2 months with vehicle, or the potent PARP inhibitor INO-1001. In the vehicle-treated aging animals, there was a marked reduction of both systolic and diastolic cardiac function and loss of endothelial relaxant responsiveness of aortic rings to acetylcholine. Treatment with INO-1001 improved cardiac performance in aging animals and also acetylcholine-induced, nitric oxide-mediated vascular relaxation. Thus, pharmacological inhibition of PARP may represent a novel approach to improve cardiac and vascular dysfunction associated with aging

    Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family <it>Luteoviridae</it>, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus <it>Polerovirus</it>, family <it>Luteoviridae</it>.</p> <p>Results</p> <p>Deep sequencing of small RNAs (sRNAs) from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt) long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton <it>Dcl </it>transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated.</p> <p>Conclusions</p> <p>This is the first report on the profile of sRNAs in a plant infected with a virus from the family <it>Luteoviridae</it>. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.</p

    Function and diversity of P0 proteins among cotton leafroll dwarf virus isolates

    Get PDF
    Abstract\ud \ud Background\ud The RNA silencing pathway is an important anti-viral defense mechanism in plants. As a counter defense, some members of the viral family Luteoviridae are able to evade host immunity by encoding the P0 RNA silencing suppressor protein. Here we explored the functional diversity of P0 proteins among eight cotton leafroll dwarf virus (CLRDV) isolates, a virus associated with a worldwide cotton disease known as cotton blue disease (CBD).\ud \ud \ud Methods\ud CLRDV-infected cotton plants of different varieties were collected from five growing fields in Brazil and their P0 sequences compared to three previously obtained isolates. P0’s silencing suppression activities were scored based on transient expression experiments in Nicotiana benthamiana leaves.\ud \ud \ud Results\ud High sequence diversity was observed among CLRDV P0 proteins, indicating that some isolates found in cotton varieties formerly resistant to CLRDV should be regarded as new genotypes within the species. All tested proteins were able to suppress local and systemic silencing, but with significantly variable degrees. All P0 proteins were able to mediate the decay of ARGONAUTE proteins, a key component of the RNA silencing machinery.\ud \ud \ud Conclusions\ud The sequence diversity observed in CLRDV P0s is also reflected in their silencing suppression capabilities. However, the strength of local and systemic silencing suppression was not correlated for some proteins.Instituto Matogrossense do AlgodãoConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de\ud Janeiro (FAPERJ

    Molecular characterization of a virus from the family luteoviridae associated with cotton blue disease.

    Get PDF
    Cotton blue disease is an aphid-transmitted cotton disease described in Brazil in 1962 as Vein Mosaic “var. Ribeirão Bonito”. At present it causes economically important losses in cotton crops if control measures are not implemented. The observed symptoms and mode of transmission have prompted researchers to speculate that cotton blue disease could be attributed to a member of the family Luteoviridae, but there was no molecular evidence supporting this hypothesis. We have amplified part of the genome of a virus associated with this disease using degenerate primers for members of the family Luteoviridae. Sequence analysis of the entire capsid and a partial RdRp revealed a virus probably belonging to the genus Polerovirus. Based on our results we propose that cotton blue disease is associated with a virus with the putative name Cotton leafroll dwarf virus (CLRDV)

    Functional assays to determine the significance of two common XPC 3'UTR variants found in bladder cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>XPC </it>is involved in the nucleotide excision repair of DNA damaged by carcinogens known to cause bladder cancer. Individuals homozygous for the variant allele of <it>XPC </it>c.1496C > T (p.Ala499Val) were shown in a large pooled analysis to have an increased bladder cancer risk, and we found two 3'UTR variants, *611T > A and c.*618A > G, to be in strong linkage disequilibrium with c.1496T. Here we determined if these two 3'UTR variants can affect mRNA stability and assessed the impact of all three variants on mRNA and protein expression.</p> <p>Methods</p> <p><it>In vitro </it>mRNA stability assays were performed and mRNA and protein expression measured both in plasmid-based assays and in lymphocytes and lymphoblastoid cell lines from bladder and breast cancer patients.</p> <p>Results</p> <p>The two 3'UTR variants were associated with reduced protein and mRNA expression in plasmid-based assays, suggesting an effect on mRNA stability and/or transcription/translation. A near-significant reduction in XPC protein expression (p = 0.058) was detected in lymphoblastoid cell lines homozygous for these alleles but no differences in mRNA stability in these lines was found or in mRNA or protein levels in lymphocytes heterozygous for these alleles.</p> <p>Conclusion</p> <p>The two 3'UTR variants may be the variants underlying the association of c.1496C > T and bladder cancer risk acting via a mechanism modulating protein expression.</p

    The impact of cyclin-dependent kinase 5 depletion on poly(ADP-ribose) polymerase activity and responses to radiation

    Get PDF
    Cyclin-dependent kinase 5 (Cdk5) has been identified as a determinant of sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. Here, the consequences of its depletion on cell survival, PARP activity, the recruitment of base excision repair (BER) proteins to DNA damage sites, and overall DNA single-strand break (SSB) repair were investigated using isogenic HeLa stably depleted (KD) and Control cell lines. Synthetic lethality achieved by disrupting PARP activity in Cdk5-deficient cells was confirmed, and the Cdk5KD cells were also found to be sensitive to the killing effects of ionizing radiation (IR) but not methyl methanesulfonate or neocarzinostatin. The recruitment profiles of GFP-PARP-1 and XRCC1-YFP to sites of micro-irradiated Cdk5KD cells were slower and reached lower maximum values, while the profile of GFP-PCNA recruitment was faster and attained higher maximum values compared to Control cells. Higher basal, IR, and hydrogen peroxide-induced polymer levels were observed in Cdk5KD compared to Control cells. Recruitment of GFP-PARP-1 in which serines 782, 785, and 786, potential Cdk5 phosphorylation targets, were mutated to alanines in micro-irradiated Control cells was also reduced. We hypothesize that Cdk5-dependent PARP-1 phosphorylation on one or more of these serines results in an attenuation of its ribosylating activity facilitating persistence at DNA damage sites. Despite these deficiencies, Cdk5KD cells are able to effectively repair SSBs probably via the long patch BER pathway, suggesting that the enhanced radiation sensitivity of Cdk5KD cells is due to a role of Cdk5 in other pathways or the altered polymer levels

    Computational Models of HIV-1 Resistance to Gene Therapy Elucidate Therapy Design Principles

    Get PDF
    Gene therapy is an emerging alternative to conventional anti-HIV-1 drugs, and can potentially control the virus while alleviating major limitations of current approaches. Yet, HIV-1's ability to rapidly acquire mutations and escape therapy presents a critical challenge to any novel treatment paradigm. Viral escape is thus a key consideration in the design of any gene-based technique. We develop a computational model of HIV's evolutionary dynamics in vivo in the presence of a genetic therapy to explore the impact of therapy parameters and strategies on the development of resistance. Our model is generic and captures the properties of a broad class of gene-based agents that inhibit early stages of the viral life cycle. We highlight the differences in viral resistance dynamics between gene and standard antiretroviral therapies, and identify key factors that impact long-term viral suppression. In particular, we underscore the importance of mutationally-induced viral fitness losses in cells that are not genetically modified, as these can severely constrain the replication of resistant virus. We also propose and investigate a novel treatment strategy that leverages upon gene therapy's unique capacity to deliver different genes to distinct cell populations, and we find that such a strategy can dramatically improve efficacy when used judiciously within a certain parametric regime. Finally, we revisit a previously-suggested idea of improving clinical outcomes by boosting the proliferation of the genetically-modified cells, but we find that such an approach has mixed effects on resistance dynamics. Our results provide insights into the short- and long-term effects of gene therapy and the role of its key properties in the evolution of resistance, which can serve as guidelines for the choice and optimization of effective therapeutic agents
    corecore