3,014 research outputs found

### Testing approaches for global optimization of space trajectories

In this paper the procedures to test global search algorithms applied to
space trajectory design problems are discussed. Furthermore, a number
of performance indexes that can be used to evaluate the effectiveness of
the tested algorithms are presented. The performance indexes are then
compared and the actual significance of each one of them is highlighted.
Three global optimization algorithms are tested on three typical space
trajectory design problems

### On testing global optimization algorithms for space trajectory design

In this paper we discuss the procedures to test a global search algorithm applied to a space trajectory design problem. Then, we present some performance indexes that can
be used to evaluate the effectiveness of global optimization algorithms. The performance
indexes are then compared highlighting the actual significance of each one of them. A number of global optimization algorithms are tested on four typical space trajectory design problems. From the results of the proposed testing procedure we infer for each pair
algorithm-problem the relation between the heuristics implemented in the solution algorithm and the main characteristics of the problem under investigation. From this analysis we derive a novel interpretation of some evolutionary heuristics, based on dynamical system
theory and we significantly improve the performance of one of the tested algorithms

### Extension of the sun-synchronous Orbit

Through careful consideration of the orbit perturbation force due to the oblate nature of the primary body a secular variation of the ascending node angle of a near-polar orbit can be induced without expulsion of propellant. Resultantly, the orbit perturbations can be used to maintain the orbit plane in, for example, a near-perpendicular (or at any other angle) alignment to the Sun-line throughout the full year of the primary body; such orbits are normally termed Sun-synchronous orbits [1, 2]. Sun-synchronous orbits about the Earth are typically near-circular Low-Earth Orbits (LEOs), with an altitude of less than 1500 km. It is normal to design a LEO such that the orbit period is synchronised with the rotation of the Earthās surface over a given period, such that a repeating ground-track is established. A repeating ground-track, together with the near-constant illumination conditions of the ground-track when observed from a Sun-synchronous orbit, enables repeat observations of a target over an extended period under similar illumination conditions [1, 2]. For this reason, Sun-synchronous orbits are extensively used by Earth Observation (EO) platforms, including currently the Environmental Satellite (ENVISAT), the second European Remote Sensing satellite (ERS-2) and many more. By definition, a given Sun-synchronous orbit is a finite resource similar to a geostationary orbit. A typical characterising parameter of a Sun-synchronous orbit is the Mean Local Solar Time (MLST) at descending node, with a value of 1030 hours typical. Note that ERS-1 and ERS-2 used a MLST at descending node of 1030 hours Ā± 5 minutes, while ENVISAT uses a 1000 hours Ā± 5 minutes MLST at descending node [3]. Following selection of the MLST at descending node and for a given desired repeat ground-track, the orbit period and hence the semi-major axis are fixed, thereafter assuming a circular orbit is desired it is found that only a single orbit inclination will enable a Sun-synchronous orbit [2]. As such, only a few spacecraft can populate a given repeat ground-track Sun-synchronous orbit without compromise, for example on the MLST at descending node. Indeed a notable feature of on-going studies by the ENVISAT Post launch Support Office is the desire to ensure sufficient propellant remains at end-of-mission for re-orbiting to a graveyard orbit to ensure the orbital slot is available for future missions [4]. An extension to the Sun-synchronous orbit is considered using an undefined, non-orientation constrained, low-thrust propulsion system. Initially the low-thrust propulsion system will be considered for the free selection of orbit inclination and altitude while maintaining the Sun-synchronous condition. Subsequently the maintenance of a given Sun-synchronous repeat-ground track will be considered, using the low-thrust propulsion system to enable the free selection of orbit altitude. An analytical expression will be developed to describe these extensions prior to then validating the analytical expressions within a numerical simulation of a spacecraft orbit. Finally, an analysis will be presented on transfer and injection trajectories to these orbits

### Computing the set of Epsilon-efficient solutions in multiobjective space mission design

In this work, we consider multiobjective space mission design problems. We will start from the need, from a practical point of view, to consider in addition to the (Pareto) optimal solutions also nearly optimal ones. In fact, extending the set of solutions for a given mission to those nearly optimal signiļ¬cantly increases the number of options for the decision maker and gives a measure of the size of the launch windows corresponding to each optimal solution, i.e., a measure of its robustness. Whereas the possible loss of such approximate solutions compared to optimalāand possibly even ābetterāāones is dispensable. For this, we will examine several typical problems in space trajectory designāa biimpulsive transfer from the Earth to the asteroid Apophis and two low-thrust multigravity assist transfersāand demonstrate the possible beneļ¬t of the novel approach. Further, we will present a multiobjective evolutionary algorithm which is designed for this purpose

### Improved shaping approach to the preliminary design of low-thrust trajectories

This paper presents a general framework for the development of shape-based approaches to low-thrust trajectory design. A novel shaping method, based on a three-dimensional description of the trajectory in spherical coordinates, is developed within this general framework. Both the exponential sinusoid and the inverse polynomial shaping are demonstrated to be particular two-dimensional cases of the spherical one. The pseudoequinoctial shaping is revisited within the new framework, and the nonosculating nature of the pseudoequinoctial elements is analyzed. A two step approach is introduced to solve the time of flight constraint, related to the design of low-thrust arcs with boundary constraints for both spherical and pseudoequinoctial shaping. The solution derived from the shaping approach is improved with a feedback linear-quadratic controller and compared against a direct collocation method based on finite elements in time. The new shaping approach and the combination of shaping and linear-quadratic controller are tested on three case studies: a mission to Mars, a mission to asteroid 1989ML, a mission to comet Tempel-1, and a mission to Neptune

### Analysis of some global optimization algorithms for space trajectory design

In this paper, we analyze the performance of some global search algorithms on a number of space trajectory design problems. A rigorous testing procedure is introduced to measure the ability of an algorithm to identify the set of Ā²-optimal solutions. From the analysis of the test results, a novel algorithm is derived. The development of the novel algorithm starts from the redefinition of some evolutionary heuristics in the form of a discrete dynamical system. The convergence properties of this discrete dynamical system are used to derive a hybrid evolutionary algorithm that displays very good performance on the particular class of problems presented in this paper

### Robust multi-fidelity design of a micro re-entry unmanned space vehicle

This article addresses the preliminary robust design of a small-scale re-entry unmanned space vehicle by means of a hybrid optimization technique. The approach, developed in this article, closely couples an evolutionary multi-objective algorithm with a direct transcription method for optimal control problems. The evolutionary part handles the shape parameters of the vehicle and the uncertain objective functions, while the direct transcription method generates an optimal control profile for the re-entry trajectory. Uncertainties on the aerodynamic forces and characteristics of the thermal protection material are incorporated into the vehicle model, and a Monte-Carlo sampling procedure is used to compute relevant statistical characteristics of the maximum heat flux and internal temperature. Then, the hybrid algorithm searches for geometries that minimize the mean value of the maximum heat flux, the mean value of the maximum internal temperature, and the weighted sum of their variance: the evolutionary part handles the shape parameters of the vehicle and the uncertain functions, while the direct transcription method generates the optimal control profile for the re-entry trajectory of each individual of the population. During the optimization process, artificial neural networks are utilized to approximate the aerodynamic forces required by the optimal control solver. The artificial neural networks are trained and updated by means of a multi-fidelity approach: initially a low-fidelity analytical model, fitted on a waverider type of vehicle, is used to train the neural networks, and through the evolution a mix of analytical and computational fluid dynamic, high-fidelity computations are used to update it. The data obtained by the high-fidelity model progressively become the main source of updates for the neural networks till, near the end of the optimization process, the influence of the data obtained by the analytical model is practically nullified. On the basis of preliminary results, the adopted technique is able to predict achievable performance of the small spacecraft and the requirements in terms of thermal protection materials

### Currents in a many-particle parabolic quantum dot under a strong magnetic field

Currents in a few-electron parabolic quantum dot placed into a perpendicular
magnetic field are considered. We show that traditional ways of investigating
the Wigner crystallization by studying the charge density correlation function
can be supplemented by the examination of the density-current correlator.
However, care must be exercised when constructing the correct projection of the
multi-dimensional wave function space. The interplay between the magnetic field
and Euler-liquid-like behavior of the electron liquid gives rise to persistent
and local currents in quantum dots. We demonstrate these phenomena by collating
a quasi-classical theory valid in high magnetic fields and an exact numerical
solution of the many-body problem.Comment: Uses RevTeX4, figures included in the tex

### Automated multigravity assist trajectory planning with a modified ant colony algorithm

The paper presents an approach to transcribe a multigravity assist trajectory design problem into an integrated planning and scheduling problem. A modified Ant Colony Optimization (ACO) algorithm is then used to generate optimal plans corresponding to optimal sequences of gravity assists and deep space manoeuvers to reach a given destination. The modified Ant Colony Algorithm is based on a hybridization between standard ACO paradigms and a tabu-based heuristic. The scheduling algorithm is integrated into the trajectory model to provide a fast time-allocation of the events along the trajectory. The approach demonstrated to be very effective on a number of real trajectory design problems

- ā¦