243 research outputs found

    Ramp wave loading experiments driven by heavy ion beams: a feasibility study

    Get PDF
    A new design for heavy-ion beam driven ramp wave loading experiments is suggested and analyzed. The proposed setup utilizes the long stopping ranges and the variable focal spot geometry of the high-energy uranium beams available at the GSI Helmholtzzentrum für Schwerionenforschung and Facility for Antiproton and Ion Research accelerator centers in Darmstadt, Germany. The release wave created by ion beams can be utilized to create a planar ramp loading of various samples. In such experiments, the predicted high pressure amplitudes (up to 10 Mbar) and short timescales of compression (<10 ns) will allow to test the time-dependent material deformation at unprecedented extreme conditions

    Molecular CP-violating magnetic moment

    Full text link
    A concept of CP-violating (T,P-odd) permanent molecular magnetic moments μCP\mu^{CP} is introduced. We relate the moments to the electric dipole moment of electron (eEDM) and estimate μCP\mu^{CP} for several diamagnetic polar molecules. The moments exhibit a steep, Z^5, scaling with the nuclear charge Z of the heavier molecular constituent. A measurement of the CP-violating magnetization of a polarized sample of heavy molecules may improve the present limit on eEDM by several orders of magnitude.Comment: 4 pages, no figures, submitted to PR

    Electron beam based space charge measurement of intense ion beams

    Get PDF

    First high-energy proton tomography of a mouse

    Get PDF

    Coulomb plasmas in outer envelopes of neutron stars

    Get PDF
    Outer envelopes of neutron stars consist mostly of fully ionized, strongly coupled Coulomb plasmas characterized by typical densities about 10^4-10^{11} g/cc and temperatures about 10^4-10^9 K. Many neutron stars possess magnetic fields about 10^{11}-10^{14} G. Here we briefly review recent theoretical advances which allow one to calculate thermodynamic functions and electron transport coefficients for such plasmas with an accuracy required for theoretical interpretation of observations.Comment: 4 pages, 2 figures, latex2e using cpp2e.cls (included). Proc. PNP-10 Workshop, Greifswald, Germany, 4-9 Sept. 2000. Accepted for publication in Contrib. Plasma Phys. 41 (2001) no. 2-

    Modeling geoelectric fields in Ireland and the UK for space weather applications

    Get PDF
    Geoelectric fields at the Earth’s surface caused by geomagnetic storms have the potential to disrupt and damage ground-based infrastructure such as electrical power distribution networks, pipelines, and railways. Here we model geoelectric fields in Ireland and the UK during both quiet and active time intervals of geomagnetic conditions using measurements from magnetic observatories and electromagnetic tensor relationships. The analysis focused on (1) defining periods of the magnetic field variations that are largely affected by the geomagnetic storms, between 30 and 30,000 s; (2) constraining the electromagnetic tensor relationships that defines the Earth’s response to magnetic field variations; (3) implementing and validating two approaches for modeling geoelectric fields based on measurements from magnetic observatories and local and interstation electromagnetic transfer functions; and (4) estimating uncertainties when modeling geoelectric fields. The use of interstation tensor relationships allowed us to differentiate between regional and local geomagnetic sources. We found coherence values of 0.5–0.95, signal-to-noise ratio of 1–15 dB, normalized root-mean-square values of 0.8–3.4, and root-mean-square values of 0.7–84 mV/km. Within these ranges of values, sites in close proximity (<100 km) to a magnetic observatory and not affected by local storms will provide the most accurate results, while sites located at further distances and affected by spatially localized features of the storm will be less accurate. These methods enable us to more accurately model geomagnetically induced currents, and their associated uncertainties, in the British and Irish power networks
    corecore