2 research outputs found

    Understanding the Responses, Mechanism and Development of Salinity Stress Tolerant Cultivars in Rice

    Get PDF
    Rice is the most important staple food crop of much of the world’s population. Production and consumption of rice is higher in Asia but adverse environmental conditions critically threaten the rice production. Soil salinity has been a key abiotic constraint affecting the crop production by reducing growth, development and yield of the plant. Rice is highly sensitive to salinity specifically at the early vegetative and late reproductive stages. Therefore, studying the responses of crop at the morphological, physiological, biochemical and molecular level is an effective strategy. Understanding the mechanisms behind the salinity such as osmotic stress and osmolytes, ion exclusion, inclusion and compartmentation, antioxidant response and hormonal regulation. Different screening strategies such as phenotypic and genotypic screening for rice under salinity and select the salt tolerant lines. Using the conventional and molecular breeding approaches is a prerequisite for its effective management and to develop salt tolerant cultivars in rice

    Rice Aroma: Biochemical, Genetics and Molecular Aspects and Its Extraction and Quantification Methods

    Get PDF
    Aroma in rice is unique and a superior grain quality trait, varieties especially Basmati and Jasmine-type are fetching a high export price in the International markets. Among the identified volatile aroma compounds, 2AP (2 acetyl-1-pyrroline) is believed to be the distinctive biochemical compound contributing the flavor in rice. Genetically, aroma in rice arises by the phenotypic expression of spontaneous recessive mutations of the OsBadh2 gene (also known as fgr/badh2 /osbadh2/os2AP gene) which was mapped on chromosome 8. An 8-bp deletion in the exon 7 of this gene was reported to result in truncation of betaine aldehyde dehydrogenease enzyme whose loss-of-function lead to the accumulation of a major aromatic compound (2AP) in fragrant rice. Among the different sampling methods and analytical techniques for the extraction and quantification of scentedness, simultaneous distillation extraction (SDE) is traditional and normalized, whereas solid-phase micro extraction (SPME) and supercritical fluid extraction (SFE) are new, very simple, rapid, efficient and most importantly solvent-free methods. These methods are coupled with Gas Chromatography–Mass Spectrometry (GC–MS), Gas Chromatography-Flame Ionization Detector (GC-FID) and/or Gas chromatography olfactometry (GC-O) and also with sensory evaluation for readily examining 2AP compound found in rice. The major factor affecting the aroma in rice was their genetic makeup. However, the aroma quality may be differed due to different planting, pre-harvest and postharvest handling and storage. For a more extensive elucidation of all effective and fundamental factors contributing to fragrance, it is essential to explore target quantitative trait loci (QTLs) and their inheritance and locations