3,295 research outputs found

    A device to characterize optical fibres

    Get PDF
    ATLAS is a general purpose experiment approved for the LHC collider at CERN. An important component of the detector is the central hadronic calorimeter; for its construction more than 600,000 Wave Length Shifting (WLS) fibres (corresponding to a total length of 1,120 Km) have been used. We have built and put into operation a dedicated instrument for the measurement of light yield and attenuation length over groups of 20 fibres at a time. The overall accuracy achieved in the measurement of light yield (attenuation length) is 1.5% (3%). We also report the results obtained using this method in the quality control of a large sample of fibres.Comment: 17 pages 20 figeres submitted to NIM journa

    Prospects for the Search for a Standard Model Higgs Boson in ATLAS using Vector Boson Fusion

    Full text link
    The potential for the discovery of a Standard Model Higgs boson in the mass range m_H < 2 m_Z in the vector boson fusion mode has been studied for the ATLAS experiment at the LHC. The characteristic signatures of additional jets in the forward regions of the detector and of low jet activity in the central region allow for an efficient background rejection. Analyses for the H -> WW and H -> tau tau decay modes have been performed using a realistic simulation of the expected detector performance. The results obtained demonstrate the large discovery potential in the H -> WW decay channel and the sensitivity to Higgs boson decays into tau-pairs in the low-mass region around 120 GeV.Comment: 20 pages, 13 ps figures, uses EPJ style fil

    A PMT-Block test bench

    Get PDF
    The front-end electronics of the ATLAS hadronic calorimeter (Tile Cal) is housed in a unit, called {\it PMT-Block}. The PMT-Block is a compact instrument comprising a light mixer, a PMT together with its divider and a {\it 3-in-1} card, which provides shaping, amplification and integration for the signals. This instrument needs to be qualified before being assembled on the detector. A PMT-Block test bench has been developed for this purpose. This test bench is a system which allows fast, albeit accurate enough, measurements of the main properties of a complete PMT-Block. The system, both hardware and software, and the protocol used for the PMT-Blocks characterisation are described in detail in this report. The results obtained in the test of about 10000 PMT-Blocks needed for the instrumentation of the ATLAS (LHC-CERN) hadronic Tile Calorimeter are also reported.Comment: 23 pages, 10 figure

    Development of FTK architecture: a fast hardware track trigger for the ATLAS detector

    Full text link
    The Fast Tracker (FTK) is a proposed upgrade to the ATLAS trigger system that will operate at full Level-1 output rates and provide high quality tracks reconstructed over the entire detector by the start of processing in Level-2. FTK solves the combinatorial challenge inherent to tracking by exploiting the massive parallelism of Associative Memories (AM) that can compare inner detector hits to millions of pre-calculated patterns simultaneously. The tracking problem within matched patterns is further simplified by using pre-computed linearized fitting constants and leveraging fast DSP's in modern commercial FPGA's. Overall, FTK is able to compute the helix parameters for all tracks in an event and apply quality cuts in approximately one millisecond. By employing a pipelined architecture, FTK is able to continuously operate at Level-1 rates without deadtime. The system design is defined and studied using ATLAS full simulation. Reconstruction quality is evaluated for single muon events with zero pileup, as well as WH events at the LHC design luminosity. FTK results are compared with the tracking capability of an offline algorithm.Comment: To be published in the proceedings of DPF-2009, Detroit, MI, July 2009, eConf C09072

    The Evolution of FTK, a Real-Time Tracker for Hadron Collider Experiments

    Full text link
    We describe the architecture evolution of the highly-parallel dedicated processor FTK, which is driven by the simulation of LHC events at high luminosity (1034 cm-2 s-1). FTK is able to provide precise on-line track reconstruction for future hadronic collider experiments. The processor, organized in a two-tiered pipelined architecture, execute very fast algorithms based on the use of a large bank of pre-stored patterns of trajectory points (first tier) in combination with full resolution track fitting to refine pattern recognition and to determine off-line quality track parameters. We describe here how the high luminosity simulation results have produced a new organization of the hardware inside the FTK processor core.Comment: 11th ICATPP conferenc

    Radiative corrections to the semileptonic and hadronic Higgs-boson decays H -> W W/Z Z -> 4 fermions

    Get PDF
    The radiative corrections of the strong and electroweak interactions are calculated for the Higgs-boson decays H -> WW/ZZ -> 4f with semileptonic or hadronic four-fermion final states in next-to-leading order. This calculation is improved by higher-order corrections originating from heavy-Higgs-boson effects and photonic final-state radiation off charged leptons. The W- and Z-boson resonances are treated within the complex-mass scheme, i.e. without any resonance expansion or on-shell approximation. The calculation essentially follows our previous study of purely leptonic final states. The electroweak corrections are similar for all four-fermion final states; for integrated quantities they amount to some per cent and increase with growing Higgs-boson mass M_H, reaching 7-8% at M_H \sim 500 GeV. For distributions, the corrections are somewhat larger and, in general, distort the shapes. Among the QCD corrections, which include corrections to interference contributions of the Born diagrams, only the corrections to the squared Born diagrams turn out to be relevant. These contributions can be attributed to the gauge-boson decays, i.e. they approximately amount to \alpha_s/\pi for semileptonic final states and 2\alpha_s/\pi for hadronic final states. The discussed corrections have been implemented in the Monte Carlo event generator PROPHECY4F.Comment: 29 pages, LaTeX, 30 postscript figure

    The Higgs Working Group: Summary Report (2001)

    Full text link
    Report of the Higgs working group for the Workshop `Physics at TeV Colliders', Les Houches, France, 21 May - 1 June 2001. It contains 7 separate sections: A. Theoretical Developments B. Higgs Searches at the Tevatron C. Experimental Observation of an invisible Higgs Boson at LHC D. Search for the Standard Model Higgs Boson using Vector Boson Fusion at the LHC E. Study of the MSSM channel A/H→ττA/H \to \tau \tau at the LHC F. Searching for Higgs Bosons in ttˉHt\bar t H Production G. Studies of Charged Higgs Boson Signals for the Tevatron and the LHCComment: 120 pages, latex, many figures, proceedings of the Workshop `Physics at TeV Colliders', Les Houches, France, 21 May - 1 June 2001, full Author list included in paper. Typos corrected, author list and acknowledgements completed. Convernors: D. Cavalli, A. Djouadi, K. Jakobs, A. Nikitenko, M. Spira, C.E.M. Wagner, W.-M. Ya

    Hadron Energy Reconstruction for the ATLAS Calorimetry in the Framework of the Non-parametrical Method

    Get PDF
    This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the non-parametrical method. The non-parametrical method utilizes only the known e/he/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within ±1\pm 1% of the true values and the fractional energy resolution is [(58±3)/E+(2.5±0.3)[(58\pm3)% /\sqrt{E}+(2.5\pm0.3)%]\oplus (1.7\pm0.2)/E. The value of the e/he/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74±0.041.74\pm0.04 and agrees with the prediction that e/h>1.7e/h > 1.7 for this electromagnetic calorimeter. Results of a study of the longitudinal hadronic shower development are also presented. The data have been taken in the H8 beam line of the CERN SPS using pions of energies from 10 to 300 GeV.Comment: 33 pages, 13 figures, Will be published in NIM

    Search for the exotic Θ+\Theta^+ resonance in the NOMAD experiment

    Get PDF
    A search for exotic Theta baryon via Theta -> proton +Ks decay mode in the NOMAD muon neutrino DIS data is reported. The special background generation procedure was developed. The proton identification criteria are tuned to maximize the sensitivity to the Theta signal as a function of xF which allows to study the Theta production mechanism. We do not observe any evidence for the Theta state in the NOMAD data. We provide an upper limit on Theta production rate at 90% CL as 2.13 per 1000 of neutrino interactions.Comment: Accepted to European Physics Journal
    • …