798 research outputs found

    Prediction of cognitive outcome based on the progression of auditory discrimination during coma.

    Get PDF
    To date, no clinical test is able to predict cognitive and functional outcome of cardiac arrest survivors. Improvement of auditory discrimination in acute coma indicates survival with high specificity. Whether the degree of this improvement is indicative of recovery remains unknown. Here we investigated if progression of auditory discrimination can predict cognitive and functional outcome. We prospectively recorded electroencephalography responses to auditory stimuli of post-anoxic comatose patients on the first and second day after admission. For each recording, auditory discrimination was quantified and its evolution over the two recordings was used to classify survivors as "predicted" when it increased vs. "other" if not. Cognitive functions were tested on awakening and functional outcome was assessed at 3 months using the Cerebral Performance Categories (CPC) scale. Thirty-two patients were included, 14 "predicted survivors" and 18 "other survivors". "Predicted survivors" were more likely to recover basic cognitive functions shortly after awakening (ability to follow a standardized neuropsychological battery: 86% vs. 44%; p=0.03 (Fisher)) and to show a very good functional outcome at 3 months (CPC 1: 86% vs. 33%; p=0.004 (Fisher)). Moreover, progression of auditory discrimination during coma was strongly correlated with cognitive performance on awakening (phonemic verbal fluency: rs=0.48; p=0.009 (Spearman)). Progression of auditory discrimination during coma provides early indication of future recovery of cognitive functions. The degree of improvement is informative of the degree of functional impairment. If confirmed in a larger cohort, this test would be the first to predict detailed outcome at the single-patient level

    Evidence of trace conditioning in comatose patients revealed by the reactivation of EEG responses to alerting sounds.

    Get PDF
    Trace conditioning refers to a learning process occurring after repeated presentation of a neutral conditioned stimulus (CS+) and a salient unconditioned stimulus (UCS) separated by a temporal gap. Recent studies have reported that trace conditioning can occur in humans in reduced levels of consciousness by showing a transfer of the unconditioned autonomic response to the CS+ in healthy sleeping individuals and in vegetative state patients. However, no previous studies have investigated the neural underpinning of trace conditioning in the absence of consciousness in humans. In the present study, we recorded the EEG activity of 29 post-anoxic comatose patients while presenting a trace conditioning paradigm using neutral tones as CS+ and alerting sounds as UCS. Most patients received therapeutic hypothermia and all were deeply unconscious according to standardized clinical scales. After repeated presentation of the CS+ and UCS couple, learning was assessed by measuring the EEG activity during the period where the UCS is omitted after CS+ presentation. Specifically we assessed the 'reactivation' of the neural response to UCS omission by applying a decoding algorithm derived from the statistical model of the EEG activity in response to the UCS presentation. The same procedure was used in a group of 12 awake healthy controls. We found a reactivation of the UCS response in absence of stimulation in eight patients (five under therapeutic hypothermia) and four healthy controls. Additionally, the reactivation effect was temporally specific within trials since it manifested primarily at the specific latency of UCS presentation and significantly less before or after this period. Our results show for the first time that trace conditioning may manifest as a reactivation of the EEG activity related to the UCS and even in the absence of consciousness

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for Higgs bosons produced via vector-boson fusion and decaying into bottom quark pairs in √s =13 TeV pp collisions with the ATLAS detector