2,859 research outputs found

    First measurement of low intensity fast neutron background from rock at the Boulby Underground Laboratory

    Get PDF
    A technique to measure low intensity fast neutron flux has been developed. The design, calibrations, procedure for data analysis and interpretation of the results are discussed in detail. The technique has been applied to measure the neutron background from rock at the Boulby Underground Laboratory, a site used for dark matter and other experiments, requiring shielding from cosmic ray muons. The experiment was performed using a liquid scintillation detector. A 6.1 litre volume stainless steel cell was filled with an in-house made liquid scintillator loaded with Gd to enhance neutron capture. A two-pulse signature (proton recoils followed by gammas from neutron capture) was used to identify the neutron events from much larger gamma background from PMTs. Suppression of gammas from the rock was achieved by surrounding the detector with high-purity lead and copper. Calibrations of the detector were performed with various gamma and neutron sources. Special care was taken to eliminate PMT afterpulses and correlated background events from the delayed coincidences of two pulses in the Bi-Po decay chain. A four month run revealed a neutron-induced event rate of 1.84 +- 0.65 (stat.) events/day. Monte Carlo simulations based on the GEANT4 toolkit were carried out to estimate the efficiency of the detector and the energy spectra of the expected proton recoils. From comparison of the measured rate with Monte Carlo simulations the flux of fast neutrons from rock was estimated as (1.72 +- 0.61 (stat.) +- 0.38 (syst.))*10^(-6) cm^(-2) s^(-1) above 0.5 MeV.Comment: 37 pages, 24 figures, to be published in Astroparticle Physic

    First Results from the DRIFT-IIa Dark Matter Detector

    Get PDF
    Data from the DRIFT-IIa directional dark matter experiment are presented, collected during a near continuous 6 month running period. A detailed calibration analysis comparing data from gamma-ray, x-ray and neutron sources to a GEANT4 Monte Carlo simulations reveals an efficiency for detection of neutron induced recoils of 94+/-2(stat.)+/-5(sys.)%. Software-based cuts, designed to remove non-nuclear recoil events, are shown to reject 60Co gamma-rays with a rejection factor of better than 8x10-6 for all energies above threshold. An unexpected event population has been discovered and is shown here to be due to the alpha-decay of 222Rn daughter nuclei that have attached to the central cathode. A limit on the flux of neutrons in the Boulby Underground Laboratory is derived from analysis of unshielded and shielded data.Comment: 43 pages, 14 figures, submitted to Astroparticle Physic

    Simulations of neutron background in a time projection chamber relevant to dark matter searches

    Full text link
    Presented here are results of simulations of neutron background performed for a time projection chamber acting as a particle dark matter detector in an underground laboratory. The investigated background includes neutrons from rock and detector components, generated via spontaneous fission and (alpha, n) reactions, as well as those due to cosmic-ray muons. Neutrons were propagated to the sensitive volume of the detector and the nuclear recoil spectra were calculated. Methods of neutron background suppression were also examined and limitations to the sensitivity of a gaseous dark matter detector are discussed. Results indicate that neutrons should not limit sensitivity to WIMP-nucleon interactions down to a level of (1 - 3) x 10^{-8} pb in a 10 kg detector.Comment: 27 pages (total, including 3 tables and 11 figures). Accepted for publication in Nuclear Instruments and Methods in Physics Research - Section

    First measurement of the Head-Tail directional nuclear recoil signature at energies relevant to WIMP dark matter searches

    Get PDF
    We present first evidence for the so-called Head-Tail asymmetry signature of neutron-induced nuclear recoil tracks at energies down to 1.5 keV/amu using the 1m^3 DRIFT-IIc dark matter detector. This regime is appropriate for recoils induced by Weakly Interacting Massive Particle (WIMPs) but one where the differential ionization is poorly understood. We show that the distribution of recoil energies and directions induced here by Cf-252 neutrons matches well that expected from massive WIMPs. The results open a powerful new means of searching for a galactic signature from WIMPs.Comment: 4 pages, 6 figures, 1 tabl

    First Dark Matter Results from the XENON100 Experiment

    Full text link
    The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso in Italy, is designed to search for dark matter WIMPs scattering off 62 kg of liquid xenon in an ultra-low background dual-phase time projection chamber. In this letter, we present first dark matter results from the analysis of 11.17 live days of non-blind data, acquired in October and November 2009. In the selected fiducial target of 40 kg, and within the pre-defined signal region, we observe no events and hence exclude spin-independent WIMP-nucleon elastic scattering cross-sections above 3.4 x 10^-44 cm^2 for 55 GeV/c^2 WIMPs at 90% confidence level. Below 20 GeV/c^2, this result constrains the interpretation of the CoGeNT and DAMA signals as being due to spin-independent, elastic, light mass WIMP interactions.Comment: 5 pages, 5 figures. Matches published versio

    Low Energy Electron and Nuclear Recoil Thresholds in the DRIFT-II Negative Ion TPC for Dark Matter Searches

    Get PDF
    Understanding the ability to measure and discriminate particle events at the lowest possible energy is an essential requirement in developing new experiments to search for weakly interacting massive particle (WIMP) dark matter. In this paper we detail an assessment of the potential sensitivity below 10 keV in the 1 m^3 DRIFT-II directionally sensitive, low pressure, negative ion time projection chamber (NITPC), based on event-by-event track reconstruction and calorimetry in the multiwire proportional chamber (MWPC) readout. By application of a digital smoothing polynomial it is shown that the detector is sensitive to sulfur and carbon recoils down to 2.9 and 1.9 keV respectively, and 1.2 keV for electron induced events. The energy sensitivity is demonstrated through the 5.9 keV gamma spectrum of 55Fe, where the energy resolution is sufficient to identify the escape peak. The effect a lower energy sensitivity on the WIMP exclusion limit is demonstrated. In addition to recoil direction reconstruction for WIMP searches this sensitivity suggests new prospects for applications also in KK axion searches

    Material screening and selection for XENON100

    Full text link
    Results of the extensive radioactivity screening campaign to identify materials for the construction of XENON100 are reported. This Dark Matter search experiment is operated underground at Laboratori Nazionali del Gran Sasso (LNGS), Italy. Several ultra sensitive High Purity Germanium detectors (HPGe) have been used for gamma ray spectrometry. Mass spectrometry has been applied for a few low mass plastic samples. Detailed tables with the radioactive contaminations of all screened samples are presented, together with the implications for XENON100.Comment: 8 pages, 1 figur

    Track Reconstruction and Performance of DRIFT Directional Dark Matter Detectors using Alpha Particles

    Get PDF
    First results are presented from an analysis of data from the DRIFT-IIa and DRIFT-IIb directional dark matter detectors at Boulby Mine in which alpha particle tracks were reconstructed and used to characterise detector performance--an important step towards optimising directional technology. The drift velocity in DRIFT-IIa was [59.3 +/- 0.2 (stat) +/- 7.5 (sys)] m/s based on an analysis of naturally-occurring alpha-emitting background. The drift velocity in DRIFT-IIb was [57 +/- 1 (stat) +/- 3 (sys)] m/s determined by the analysis of alpha particle tracks from a Po-210 source. 3D range reconstruction and energy spectra were used to identify alpha particles from the decay of Rn-222, Po-218, Rn-220 and Po-216. This study found that (22 +/- 2)% of Po-218 progeny (from Rn-222 decay) are produced with no net charge in 40 Torr CS2. For Po-216 progeny (from Rn-220 decay) the uncharged fraction is (100 +0 -35)%.Comment: 27 pages, 12 figures, 5 tables. Submitted to Nuclear Instruments and Methods in Physics Research, Section A. Subj-class: Instrumentation and Detector

    The ZEPLIN-III dark matter detector: instrument design, manufacture and commissioning

    Get PDF
    We present details of the technical design and manufacture of the ZEPLIN-III dark matter experiment. ZEPLIN-III is a two-phase xenon detector which measures both the scintillation light and the ionisation charge generated in the liquid by interacting particles and radiation. The instrument design is driven by both the physics requirements and by the technology requirements surrounding the use of liquid xenon. These include considerations of key performance parameters, such as the efficiency of scintillation light collection, restrictions placed on the use of materials to control the inherent radioactivity levels, attainment of high vacuum levels and chemical contamination control. The successful solution has involved a number of novel design and manufacturing features which will be of specific use to future generations of direct dark matter search experiments as they struggle with similar and progressively more demanding requirements.Comment: 25 pages, 19 figures. Submitted to Astropart. Phys. Some figures down sampled to reduce siz
    • ‚Ķ