162 research outputs found

    Gene-targeted embryonic stem cells: real-time PCR assay for estimation of the number of neomycin selection cassettes

    Get PDF
    In the preparation of transgenic murine ES cells it is important to verify the construct has a single insertion, because an ectopic neomycin phosphortransferase positive selection cassette (NEO) may cause a position effect. During a recent work, where a knockin SCA28 mouse was prepared, we developed two assays based on Real-Time PCR using both SYBR Green and specific minor groove binder (MGB) probes to evaluate the copies of NEO using the comparative delta-delta Ct method versus the Rpp30 reference gene

    Abscisic acid transport in human erythrocytes

    Get PDF
    Abscisic acid (ABA) is a plant hormone involved in the response to environmental stress. Recently, ABA has been shown to be present and active also in mammals, where it stimulates the functional activity of innate immune cells, of mesenchymal and hemopoietic stem cells, and insulin-releasing pancreatic \u3b2-cells. LANCL2, the ABA receptor in mammalian cells, is a peripheral membrane protein that localizes at the intracellular side of the plasma membrane. Here we investigated the mechanism enabling ABA transport across the plasmamembrane of human red blood cells (RBC). Both influx and efflux of [3H]ABA occur across intact RBC, as detected by radiometric and chromatographic methods. ABA binds specifically to Band 3 (the RBC anion transporter), as determined by labeling of RBC membranes with biotinylated ABA. Proteoliposomes reconstituted with human purified Band 3 transport [3H]ABA and [35S]sulfate, and ABA transport is sensitive to the specific Band 3 inhibitor 4,4\u2032-diisothiocyanostilbene-2,2\u2032-disulfonic acid. Once inside RBC, ABA stimulates ATP release through the LANCL2-mediated activation of adenylate cyclase. As ATP released from RBC is known to exert a vasodilator response, these results suggest a role for plasma ABA in the regulation of vascular ton

    Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    Get PDF
    Background & AimsThe liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice.MethodsWe created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1a fl/fl;alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured.ResultsFlvcr1afl/fl;alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1afl/fl;alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450.ConclusionsIn livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism

    miR-214 coordinates melanoma progression by upregulating ALCAM through TFAP2 and miR-148b downmodulation

    Get PDF
    Malignant melanoma is one of the most aggressive human cancers, but the mechanisms governing its metastatic dissemination are not fully understood. Upregulation of miR-214 and ALCAM and the loss of TFAP2 expression have been implicated in this process, with TFAP2 a direct target of miR-214. Here, we link miR-214 and ALCAM as well as identify a core role for miR-214 in organizing melanoma metastasis. miR- 214 upregulated ALCAM, acting transcriptionally through TFAP2 and also posttranscriptionally through miR-148b (itself controlled by TFAP2), both negative regulators of ALCAM. We also identified several miR-214–mediated prometastatic functions directly promoted by ALCAM. Silencing ALCAM in miR-214–overexpressing melanoma cells reduced cell migration and invasion without affecting growth or anoikisin vitro, and it also impaired extravasation and metastasis formation in vivo. Conversely, cell migration and extravasation was reduced in miR-214–overexpressing cells by upregulation of either miR 148b or TFAP2. These findings were consistent with patterns of expression of miR-214, ALCAM, and miR-148b in human melanoma specimens. Overall, our results define a pathway involving miR-214, miR-148b, TFAP2, and ALCAM that is critical for establishing distant metastases in melanoma

    Citron Rho-interacting Kinase, a Novel Tissue-specific Ser/Thr Kinase Encompassing the Rho-Rac-binding Protein Citron *

    Get PDF
    We have identified a novel serine/threonine kinase belonging to the myotonic dystrophy kinase family. The kinase can be produced in at least two different isoforms: a approximately 240-kDa protein (Citron Rho-interacting kinase, CRIK), in which the kinase domain is followed by the sequence of Citron, a previously identified Rho/Rac binding protein; a approximately 54-kDa protein (CRIK-short kinase (SK)), which consists mostly of the kinase domain. CRIK and CRIK-SK proteins are capable of phosphorylating exogenous substrates as well as of autophosphorylation, when tested by in vitro kinase assays after expression into COS7 cells. CRIK kinase activity is increased severalfold by coexpression of costitutively active Rho, while active Rac has more limited effects. Kinase activity of endogenous CRIK is indicated by in vitro kinase assays after immunoprecipitation with antibodies recognizing the Citron moiety of the protein. When expressed in keratinocytes, full-length CRIK, but not CRIK-SK, localizes into corpuscular cytoplasmic structures and elicits recruitment of actin into these structures. The previously reported Rho-associated kinases ROCK I and II are ubiquitously expressed. In contrast, CRIK exhibits a restricted pattern of expression, suggesting that this kinase may fulfill a more specialized function in specific cell types

    Dalla classe al bosco. Una ricerca esplorativa nella scuola primaria

    Get PDF
    Recently, the experiences and reflections regarding outdoor education in schools have been gradually spreading in Italy. Despite a quite ancient history and a favourable climate in many areas of the country, outdoor education is not yet widespread and primarily limited to pre-school, often in the private sector. To overcome this limitation, a pilot outdoor project was tested in a primary school to verify its effectiveness in terms of disciplinary and transversal skills development. The research adopted an exploratory evaluation research approach and used a variety of both quantitative and qualitative tools and procedures. School sessions in the forest focused on Italian language contents were observed and questionnaires on school well-being, parallel school tests, and, for the second class, also the results of the Invalsi tests were analysed. Interesting data emerged, especially from a qualitative point of view, as already demonstrated by many studies carried out at the European level, regarding the support of learning processes. No significant results emerged from the point of view of the discipline in the classes involved in the project, above all due to the impossibility of guaranteeing children regular sessions in the forest.Le esperienze e le riflessioni sull’educazione all’aperto nella scuola si stanno diffondendo progressivamente ormai da qualche tempo anche in Italia. Nonostante una storia tutt’altro che recente e un clima favorevole in molte zone del paese però, non si tratta ancora di una diffusione capillare ed è comunque limitata primariamente in ambito prescolastico, spesso del privato sociale. Per questo motivo, si è deciso di provare ad avvicinarsi alla realtà statale della scuola primaria con l’obiettivo di verificare l’efficacia di un progetto pilota di educazione all’aperto rispetto ad alcune abilità e conoscenze disciplinari e trasversali. La ricerca si è configurata come ricerca empirica di tipo esplorativo e si è avvalsa di una pluralità di strumenti e procedure sia quantitative che qualitative. Sono state osservate sessioni di scuola nel bosco centrate su contenuti di lingua italiana e analizzati questionari sul benessere scolastico, prove parallele di Istituto e, per la classe seconda, anche i risultati delle prove Invalsi. Sono emersi dati interessanti, soprattutto dal punto di vista qualitativo, come peraltro evidenziato in molte ricerche già condotte a livello europeo, a supporto e accompagnamento dei processi di apprendimento. Non è emerso alcun risultato di rilievo in ambito disciplinare nelle classi coinvolte nel progetto, soprattutto per l’impossibilità di garantire ai bambini sessioni regolari nel bosco

    Blockade of thrombopoietin reduces organ damage in experimental endotoxemia and polymicrobial sepsis

    Get PDF
    BACKGROUND AND PURPOSE:Thrombopoietin (TPO), a growth factor primarily involved in thrombopoiesis may also have a role in the pathophysiology of sepsis. In patients with sepsis, indeed, TPO levels are markedly increased, with disease severity being the major independent determinant of TPO concentrations. Moreover, TPO increases and correlates with ex vivo indices of platelet activation in patients with burn injury upon sepsis development, and may contribute to depress cardiac contractility in septic shock. Still, the role of TPO in sepsis pathophysiology remains controversial, given the protective role of TPO in other experimental disease models, for instance in doxorubicin-induced cardiotoxicity and myocardial ischemia/reperfusion injury. The aim of our study was to define the contribution of TPO in the development of organ damage induced by endotoxemia or sepsis, and to investigate the effects of inhibiting TPO in these conditions. METHODS:We synthesized a chimeric protein able to inhibit TPO, mTPOR-MBP, and studied its effect in two murine experimental models, acute endotoxemia and cecal ligation and puncture (CLP) model. RESULTS:In both models, TPO levels markedly increased, from 289.80±27.87 pg/mL to 465.60±45.92 pg/mL at 3 hours in the LPS model (P<0.01), and from 265.00±26.02 pg/mL to 373.70±26.20 pg/mL in the CLP model (P<0.05), respectively. Paralleling TPO levels, also platelet-monocyte aggregates increased, from 32.86±2.48% to 46.13±1.39% at 3 hours in the LPS model (P<0.01), and from 43.68±1.69% to 56.52±4.66% in the CLP model (P<0.05). Blockade of TPO by mTPOR-MBP administration reduced histological damage in target organs, namely lung, liver, and gut. In particular, neutrophil infiltration and lung septal thickening were reduced from a score of 1.86±0.34 to 0.60±0.27 (P<0.01) and from 1.43±0.37 to 0.40±0.16 (P<0.05), respectively, in the LPS model at 3 hours, and from a score of 1.75±0.37 to 0.38±0.18 (P<0.01) and from 1.25±0.31 to 0.13±0.13 (P<0.001), respectively, in the CLP model. Similarly, the number of hepatic microabscesses was decreased from 14.14±1.41 to 3.64±0.56 in the LPS model at 3 hours (P<0.001), and from 1.71±0.29 to 0.13±0.13 in the CLP model (P<0.001). Finally, the diameter of intestinal villi decreased from 90.69±3.95 μm to 70.74±3.60 μm in the LPS model at 3 hours (P<0.01), and from 74.29±4.29 μm to 57.50±1.89 μm in the CLP model (P<0.01). This protective effect was associated with the blunting of the increase in platelet-monocyte adhesion, and, on the contrary, with increased platelet-neutrophil aggregates in the circulation, which may be related to decreased neutrophil sequestration into the inflamed tissues. Conversely, circulating cytokine levels were not significantly changed, in both models, by mTPOR-MBP administration. CONCLUSION:Our results demonstrate that TPO participates in the development of organ damage induced by experimental endotoxemia or polymicrobial sepsis via a mechanism involving increased platelet-leukocyte adhesion, but not cytokine release, and suggest that blocking TPO may be useful in preventing organ damage in patients affected by systemic inflammatory response or sepsis
    • …