7 research outputs found

    Data-driven Speech Intelligibility Enhancement and Prediction for Hearing Aids

    Get PDF
    Hearing impairment is a widespread problem around the world. It is estimated that one in six people are living with some degree of hearing loss. Moderate and severe hearing impairment has been recognised as one of the major causes of disability, which is associated with declines in the quality of life, mental illness and dementia. However, investigation shows that only 10-20\% of older people with significant hearing impairment wear hearing aids. One of the main factors causing the low uptake is that current devices struggle to help hearing aid users understand speech in noisy environments. For the purpose of compensating for the elevated hearing thresholds and dysfunction of source separation processing caused by the impaired auditory system, amplification and denoising have been the major focuses of current hearing aid studies to improve the intelligibility of speech in noise. Also, it is important to derive a metric that can fairly predict speech intelligibility for the better development of hearing aid techniques. This thesis aims to enhance the speech intelligibility of hearing impaired listeners. Motivated by the success of data-driven approaches in many speech processing applications, this work proposes the differentiable hearing aid speech processing (DHASP) framework to optimise both the amplification and denoising modules within a hearing aid processor. This is accomplished by setting an intelligibility-based optimisation objective and taking advantage of large-scale speech databases to train the hearing aid processor to maximise the intelligibility for the listeners. The first set of experiments is conducted on both clean and noisy speech databases, and the results from objective evaluation suggest that the amplification fittings optimised within the DHASP framework can outperform a widely used and well-recognised fitting. The second set of experiments is conducted on a large-scale database with simulated domestic noisy scenes. The results from both objective and subjective evaluations show that the DHASP-optimised hearing aid processor incorporating a deep neural network-based denoising module can achieve competitive performance in terms of intelligibility enhancement. A precise intelligibility predictor can provide reliable evaluation results to save the cost of expensive and time-consuming subjective evaluation. Inspired by the findings that automatic speech recognition (ASR) models show similar recognition results as humans in some experiments, this work exploits ASR models for intelligibility prediction. An intrusive approach using ASR hidden representations and a non-intrusive approach using ASR uncertainty are proposed and explained in the third and fourth experimental chapters. Experiments are conducted on two databases, one with monaural speech in speech-spectrum-shaped noise with normal hearing listeners, and the other one with processed binaural speech in domestic noise with hearing impaired listeners. Results suggest that both the intrusive and non-intrusive approaches can achieve top performances and outperform a number of widely used intelligibility prediction approaches. In conclusion, this thesis covers both the enhancement and prediction of speech intelligibility for hearing aids. The proposed hearing aid processor optimised within the proposed DHASP framework can significantly improve the intelligibility of speech in noise for hearing impaired listeners. Also, it is shown that the proposed ASR-based intelligibility prediction approaches can achieve state-of-the-art performances against a number of widely used intelligibility predictors

    Exploiting Hidden Representations from a DNN-based Speech Recogniser for Speech Intelligibility Prediction in Hearing-impaired Listeners

    Full text link
    An accurate objective speech intelligibility prediction algorithms is of great interest for many applications such as speech enhancement for hearing aids. Most algorithms measures the signal-to-noise ratios or correlations between the acoustic features of clean reference signals and degraded signals. However, these hand-picked acoustic features are usually not explicitly correlated with recognition. Meanwhile, deep neural network (DNN) based automatic speech recogniser (ASR) is approaching human performance in some speech recognition tasks. This work leverages the hidden representations from DNN-based ASR as features for speech intelligibility prediction in hearing-impaired listeners. The experiments based on a hearing aid intelligibility database show that the proposed method could make better prediction than a widely used short-time objective intelligibility (STOI) based binaural measure.Comment: Submitted to INTERSPEECH202

    Intelligibility prediction with a pretrained noise-robust automatic speech recognition model

    Full text link
    This paper describes two intelligibility prediction systems derived from a pretrained noise-robust automatic speech recognition (ASR) model for the second Clarity Prediction Challenge (CPC2). One system is intrusive and leverages the hidden representations of the ASR model. The other system is non-intrusive and makes predictions with derived ASR uncertainty. The ASR model is only pretrained with a simulated noisy speech corpus and does not take advantage of the CPC2 data. For that reason, the intelligibility prediction systems are robust to unseen scenarios given the accurate prediction performance on the CPC2 evaluation

    Unsupervised Uncertainty Measures of Automatic Speech Recognition for Non-intrusive Speech Intelligibility Prediction

    Full text link
    Non-intrusive intelligibility prediction is important for its application in realistic scenarios, where a clean reference signal is difficult to access. The construction of many non-intrusive predictors require either ground truth intelligibility labels or clean reference signals for supervised learning. In this work, we leverage an unsupervised uncertainty estimation method for predicting speech intelligibility, which does not require intelligibility labels or reference signals to train the predictor. Our experiments demonstrate that the uncertainty from state-of-the-art end-to-end automatic speech recognition (ASR) models is highly correlated with speech intelligibility. The proposed method is evaluated on two databases and the results show that the unsupervised uncertainty measures of ASR models are more correlated with speech intelligibility from listening results than the predictions made by widely used intrusive methods.Comment: Submitted to INTERSPEECH202

    Energy-Based Models For Speech Synthesis

    Full text link
    Recently there has been a lot of interest in non-autoregressive (non-AR) models for speech synthesis, such as FastSpeech 2 and diffusion models. Unlike AR models, these models do not have autoregressive dependencies among outputs which makes inference efficient. This paper expands the range of available non-AR models with another member called energy-based models (EBMs). The paper describes how noise contrastive estimation, which relies on the comparison between positive and negative samples, can be used to train EBMs. It proposes a number of strategies for generating effective negative samples, including using high-performing AR models. It also describes how sampling from EBMs can be performed using Langevin Markov Chain Monte-Carlo (MCMC). The use of Langevin MCMC enables to draw connections between EBMs and currently popular diffusion models. Experiments on LJSpeech dataset show that the proposed approach offers improvements over Tacotron 2


    No full text
    pyclarity is a software suite for machine learning challenges to enhance hearing-aid signal processing and to better predict how people perceive speech-in-noise (Clarity) and speech-in-music (Cadenza). Files can be accessed via the Related Materials links below.</p