2 research outputs found

    Atypical switch-I Arginine plays a catalytic role in GTP hydrolysis by Rab21 from Entamoeba histolytica

    No full text
    Entamoeba histolytica, the causative agent of amoebic dysentery, liver abscess and colitis, exploits its vesicular trafficking machinery for survival and virulence. Rab family of small GTPases play a key role in the vesicular transport by undergoing the GTP/GDP cycle which is central to the biological processes. Amoebic genome encodes several atypical Rab GTPases which are unique due to absence of conserved sequence motif(s) or atypical residues in their catalytic site [Saito-Nakano et al., 2005]. Previously, EhRab21 has been reported to involve in amoebic invasion and migration [Emmanuel et al., 2015]. The conserved Glutamine of switch-II region is universally accepted to be crucial for GTP hydrolysis. Mutations that reduce the sidechain polarity of Glutamine render the protein GTPase activity deficient [Krengel et al., 1990]. Here, we report a catalytic role of atypical switch-I Arginine (R36) in intrinsic GTP hydrolysis catalysed by EhRab21. Unlike the GTPase activity deficient QL mutants, the GTPase activity of EhRab21Q64L was found to be marginally enhanced compared to the wild-type protein. Although EhRab21R36L mutant showed normal GTPase activity, the double mutant (R36L/Q64L) was found to be GTPase deficient. Thus, EhRab21 is a unique member of small GTPase family in which an atypical switch-I Arginine is capable of driving GTP hydrolysis independent of the conserved switch-II Glutamine

    EhC2B, a C2 domain-containing protein, promotes erythrophagocytosis in Entamoeba histolytica via actin nucleation

    No full text
    Remodelling of the actin cytoskeleton in response to external stimuli is obligatory for many cellular processes in the amoebic cell. A rapid and local rearrangement of the actin cytoskeleton is required for the development of the cellular protrusions during phagocytosis, trogocytosis, migration, and invasion. Here, we demonstrated that EhC2B, a C2 domain-containing protein, is an actin modulator. EhC2B was first identified as an effector of EhRab21 from E. histolytica. In vitro interaction studies including GST pull-down, fluorescence-based assay and ITC also corroborated with our observation. In the amoebic trophozoites, EhC2B accumulates at the pseudopods and the tips of phagocytic cups. FRAP based studies confirmed the recruitment and dynamics of EhC2B at the phagocytic cup. Moreover, we have shown the role of EhC2B in erythrophagocytosis. It is well known that calcium-dependent signal transduction is essential for the cytoskeletal dynamics during phagocytosis in the amoebic parasite. Using liposome pelleting assay, we demonstrated that EhC2B preferentially binds to the phosphatidylserine in the presence of calcium. The EhC2B mutants defective in calcium or lipid-binding failed to localise beneath the plasma membrane. The cells overexpressing these mutants have also shown a significant reduction in erythrophagocytosis. The role of EhC2B in erythrophagocytosis and pseudopod formation was also validated by siRNA-based gene knockdown approach. Finally, with the help of in vitro nucleation assay using fluorescence spectroscopy and total internal reflection fluorescence microscopy, we have established that EhC2B is an actin nucleator. Collectively, based on the results from the study, we propose that EhC2B acts like a molecular bridge which promotes membrane deformation via its actin nucleation activity during the progression of the phagocytic cup in a calcium-dependent manner
    corecore