44 research outputs found

    Covalent Functionalization of Carbon Nanomaterials with Iodonium Salts

    No full text
    Covalent functionalization significantly enhances the utility of carbon nanomaterials for many applications. Herein, we report an efficient method for the covalent functionalization of carbon nanotubes (CNTs) and graphite. This reaction involves the reduction of carbon nanomaterials with sodium naphthalide, followed by the addition of diaryliodonium salts. CNTs, including single-walled, double-walled, and multi-walled variants (SWCNTs, DWCNTs, and MWCNTs, respectively), as well as graphite, can be efficiently functionalized with substituted arene and heteroarene iodonium salts. The preferential transfer of phenyl groups containing electron-withdrawing groups was demonstrated by reactions with unsymmetrical iodonium salts. The lower reactivity of iodonium salts, relative to the more commonly used diazonium ions, presents opportunities for greater diversity in the selective functionalization of carbon nanomaterials

    Simultaneous Chirality Sensing of Multiple Amines by <sup>19</sup>F NMR

    Get PDF
    The rapid detection and differentiation of chiral compounds is important to synthetic, medicinal, and biological chemistry. Palladium complexes with chiral pincer ligands are demonstrated to have utility in determining the chirality of various amines. The binding of enantiomeric amines induces distinct <sup>19</sup>F NMR shifts of the fluorine atoms appended on the ligand that defines a chiral environment around palladium. It is further demonstrated that this method has the ability to evaluate the enantiomeric composition and discriminate between enantiomers with chiral centers several carbons away from the binding site. The wide detection window provided by optimized chiral chemosensors allows the simultaneous identification of as many as 12 chiral amines. The extraordinary discriminating ability of this method is demonstrated by the resolution of chiral aliphatic amines that are difficult to separate using chiral chromatography

    Chain-Growth Polymerization of 2‑Chlorothiophenes Promoted by Lewis Acids

    No full text
    Lewis acids promote the polymerization of several 2-chloroalkylenedioxythiophenes, providing high-molecular-weight conjugated polymers. The proposed mechanism is a cationic chain-growth polymerization, as confirmed by end-capping reactions and a linear correlation of molecular weight with percent conversion. The “living” character of this process was used to prepare new block copolymers

    Detection and Differentiation of Neutral Organic Compounds by <sup>19</sup>F NMR with a Tungsten Calix[4]arene Imido Complex

    No full text
    Fluorinated tungsten calix[4]­arene imido complexes were synthesized and used as receptors to detect and differentiate neutral organic compounds. It was found that the binding of specific neutral organic molecules to the tungsten centers induces an upfield shift of the fluorine atom appended on the arylimido group, the extent of which is highly dependent on electronic and steric properties. We demonstrate that the specific bonding and size-selectivity of calix[4]­arene tungsten–imido complex combined with <sup>19</sup>F NMR spectroscopy is a powerful new method for the analysis of complex mixtures

    Synthesis and Optical Properties of Phenylene-Containing Oligoacenes

    No full text
    Synthesis of a new class of fully unsaturated ladder structures, phenylene-containing oligoacenes (POAs), using 3,4-bis­(methylene)­cyclobutene as a building block for sequential Diels–Alder reactions is described. The geometric effects of strain and energetic cost of antiaromaticity can be observed via the optical and electrochemical properties of the reported compounds. The resulting shape-persistant ladder structures contain neighboring chromophores that are partially electronically isolated from one another while still undergoing a reduction in the band gap of the material
    corecore