248 research outputs found

    Defaunation changes leaf trait composition of recruit communities in tropical forests in French Guiana

    Get PDF
    Hunting impacts tropical vertebrate populations, causing declines of species that function as seed dispersers and predators, or that browse seedlings and saplings. Whether and how the resulting reductions in seed dispersal, seed predation, and browsing translate to changes in the tree composition is poorly understood. Here, we assess the effect of defaunation on the functional composition of communities of tree recruits in tropical rainforests in French Guiana. We selected eight sites along a gradient of defaunation, caused by differences in hunting pressure, in otherwise intact old-growth forests in French Guiana. We measured shifts in functional composition by comparing leaf and fruit traits and wood density between tree recruits (up to 5 cm diameter at breast height) and adults, and tested whether and how these compositional shifts related to defaunation. We found a positive relationship with defaunation for shifts in specific leaf area, a negative relationship for shifts of leaf toughness and wood density, and a weak relationship for shifts in fruit traits. Our results suggest that the loss of vertebrates affects ecological processes such as seed dispersal and browsing, of which browsing remains understudied. Even though these changes sometimes seem minor, together they result in major shifts in forest composition. These changes have long-term ramifications that may alter forest dynamics for generations

    The Amazon Epiphyte Network: A First Glimpse Into Continental-Scale Patterns of Amazonian Vascular Epiphyte Assemblages

    Get PDF
    Epiphytes are still an understudied plant group in Amazonia. The aim of this study was to identify distributional patterns and conservation priorities for vascular epiphyte assemblages (VEA) across Amazonia. We compiled the largest Amazonian epiphyte plot database to date, through a multinational collaborative effort of 22 researchers and 32 field sites located across four Amazonian countries – the Amazonian Epiphyte Network (AEN). We addressed the following continental-scale questions by utilizing the AEN database comprising 96,448 epiphyte individuals, belonging to 518 vascular taxa, and growing on 10,907 tree individuals (phorophytes). Our objectives here are, first, to present a qualitative evaluation of the geographic distribution of the study sites and highlight regional lacunae as priorities for future quantitative inventories. Second, to present the floristic patterns for Amazonia-wide VEA and third, to combine multivariate analyses and rank abundance curves, controlled by major Amazonian habitat types, to determine how VEA vary geographically and ecologically based on major Amazonian habitat types. Three of the most striking patterns found are that: (1) VEA are spatially structured as floristic similarity decays with geographic distance; (2) a core group of 22 oligarchic taxa account for more than a half of all individuals; and (3) extensive floristic sampling gaps still exist, mainly across the highly threatened southern Amazonian deforestation belt. This work represents a first step toward unveiling distributional pattern of Amazonian VEA, which is important to guide future questions on ecology and species distribution ranges of VEA once the collaborative database grows allowing a clearer view of patterns

    Consistent, small effects of treefall disturbances on the composition and diversity of four Amazonian forests

    Get PDF
    Summary 1. Understanding the resilience of moist tropical forests to treefall disturbance events is important for understanding the mechanisms that underlie species coexistence and for predicting the future composition of these ecosystems. Here, we test whether variation in the functional composition of Amazonian forests determines their resilience to disturbance. 2. We studied the legacy of natural treefall disturbance events in four forests across Amazonia that differ substantially in functional composition. We compared the composition and diversity of all free-standing woody stems 2-10 cm diameter in previously disturbed and undisturbed 20 9 20 m subplots within 55, one-hectare, long-term forest inventory plots. 3. Overall, stem number increased following disturbance, and species and functional composition shifted to favour light-wooded, small-seeded taxa. Alpha-diversity increased, but beta-diversity was unaffected by disturbance, in all four forests. 4. Changes in response to disturbance in both functional composition and alpha-diversity were, however, small (2 -4% depending on the parameter) and similar among forests. 5. Synthesis. This study demonstrates that variation in the functional composition of Amazonian forests does not lead to large differences in the response of these forests to treefall disturbances, and overall, these events have a minor role in maintaining the diversity of these ecosystems

    Conceptual and empirical advances in Neotropical biodiversity research

    Get PDF
    The unparalleled biodiversity found in the American tropics (the Neotropics) has attracted the attention of naturalists for centuries. Despite major advances in recent years in our understanding of the origin and diversification of many Neotropical taxa and biotic regions, many questions remain to be answered. Additional biological and geological data are still needed, as well as methodological advances that are capable of bridging these research fields. In this review, aimed primarily at advanced students and early-career scientists, we introduce the concept of “trans-disciplinary biogeography,” which refers to the integration of data from multiple areas of research in biology (e.g., community ecology, phylogeography, systematics, historical biogeography) and Earth and the physical sciences (e.g., geology, climatology, palaeontology), as a means to reconstruct the giant puzzle of Neotropical biodiversity and evolution in space and time. We caution against extrapolating results derived from the study of one or a few taxa to convey general scenarios of Neotropical evolution and landscape formation. We urge more coordination and integration of data and ideas among disciplines, transcending their traditional boundaries, as a basis for advancing tomorrow’s ground-breaking research. Our review highlights the great opportunities for studying the Neotropical biota to understand the evolution of life.Keywords: Biogeography, Biotic diversification, Landscape evolution, Phylogeny, Scale, Biodiversity, Community ecology, Phylogeography, Phylogenetics, Tropics</div

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
    • 

    corecore