91 research outputs found

    Outcomes of Patients with Asymptomatic Aortic Stenosis Followed Up in Heart Valve Clinics

    Get PDF
    Importance: The natural history and the management of patients with asymptomatic aortic stenosis (AS) have not been fully examined in the current era. Objective: To determine the clinical outcomes of patients with asymptomatic AS using data from the Heart Valve Clinic International Database. Design, Setting, and Participants: This registry was assembled by merging data from prospectively gathered institutional databases from 10 heart valve clinics in Europe, Canada, and the United States. Asymptomatic patients with an aortic valve area of 1.5 cm2 or less and preserved left ventricular ejection fraction (LVEF) greater than 50% at entry were considered for the present analysis. Data were collected from January 2001 to December 2014, and data were analyzed from January 2017 to July 2018. Main Outcomes and Measures: Natural history, need for aortic valve replacement (AVR), and survival of asymptomatic patients with moderate or severe AS at entry followed up in a heart valve clinic. Indications for AVR were based on current guideline recommendations. Results: Of the 1375 patients included in this analysis, 834 (60.7%) were male, and the mean (SD) age was 71 (13) years. A total of 861 patients (62.6%) had severe AS (aortic valve area less than 1.0 cm2). The mean (SD) overall survival during medical management (mean [SD] follow up, 27 [24] months) was 93% (1%), 86% (2%), and 75% (4%) at 2, 4, and 8 years, respectively. A total of 104 patients (7.6%) died under observation, including 57 patients (54.8%) from cardiovascular causes. The crude rate of sudden death was 0.65% over the duration of the study. A total of 542 patients (39.4%) underwent AVR, including 388 patients (71.6%) with severe AS at study entry and 154 (28.4%) with moderate AS at entry who progressed to severe AS. Those with severe AS at entry who underwent AVR did so at a mean (SD) of 14.4 (16.6) months and a median of 8.7 months. The mean (SD) 2-year and 4-year AVR-free survival rates for asymptomatic patients with severe AS at baseline were 54% (2%) and 32% (3%), respectively. In those undergoing AVR, the 30-day postprocedural mortality was 0.9%. In patients with severe AS at entry, peak aortic jet velocity (greater than 5 m/s) and LVEF (less than 60%) were associated with all-cause and cardiovascular mortality without AVR; these factors were also associated with postprocedural mortality in those patients with severe AS at baseline who underwent AVR (surgical AVR in 310 patients; transcatheter AVR in 78 patients). Conclusions and Relevance: In patients with asymptomatic AS followed up in heart valve centers, the risk of sudden death is low, and rates of overall survival are similar to those reported from previous series. Patients with severe AS at baseline and peak aortic jet velocity of 5.0 m/s or greater or LVEF less than 60% have increased risks of all-cause and cardiovascular mortality even after AVR. The potential benefit of early intervention should be considered in these high-risk patients

    The present and future status of heavy neutral leptons

    Get PDF
    The existence of nonzero neutrino masses points to the likely existence of multiple Standard Model neutral fermions. When such states are heavy enough that they cannot be produced in oscillations, they are referred to as heavy neutral leptons (HNLs). In this white paper, we discuss the present experimental status of HNLs including colliders, beta decay, accelerators, as well as astrophysical and cosmological impacts. We discuss the importance of continuing to search for HNLs, and its potential impact on our understanding of key fundamental questions, and additionally we outline the future prospects for next-generation future experiments or upcoming accelerator run scenarios

    Markers of Myocardial Damage Predict Mortality in Patients With Aortic Stenosis

    Get PDF
    Background: Cardiovascular magnetic resonance (CMR) is increasingly used for risk stratification in aortic stenosis (AS). However, the relative prognostic power of CMR markers and their respective thresholds remains undefined. Objectives: Using machine learning, the study aimed to identify prognostically important CMR markers in AS and their thresholds of mortality. Methods: Patients with severe AS undergoing AVR (n = 440, derivation; n = 359, validation cohort) were prospectively enrolled across 13 international sites (median 3.8 years鈥 follow-up). CMR was performed shortly before surgical or transcatheter AVR. A random survival forest model was built using 29 variables (13 CMR) with post-AVR death as the outcome. Results: There were 52 deaths in the derivation cohort and 51 deaths in the validation cohort. The 4 most predictive CMR markers were extracellular volume fraction, late gadolinium enhancement, indexed left ventricular end-diastolic volume (LVEDVi), and right ventricular ejection fraction. Across the whole cohort and in asymptomatic patients, risk-adjusted predicted mortality increased strongly once extracellular volume fraction exceeded 27%, while late gadolinium enhancement >2% showed persistent high risk. Increased mortality was also observed with both large (LVEDVi >80 mL/m2) and small (LVEDVi 鈮55 mL/m2) ventricles, and with high (>80%) and low (鈮50%) right ventricular ejection fraction. The predictability was improved when these 4 markers were added to clinical factors (3-year C-index: 0.778 vs 0.739). The prognostic thresholds and risk stratification by CMR variables were reproduced in the validation cohort. Conclusions: Machine learning identified myocardial fibrosis and biventricular remodeling markers as the top predictors of survival in AS and highlighted their nonlinear association with mortality. These markers may have potential in optimizing the decision of AVR

    Extracellular Myocardial Volume in Patients With Aortic Stenosis

    Get PDF
    BACKGROUND: Myocardial fibrosis is a key mechanism of left ventricular decompensation in aortic stenosis and can be quantified using cardiovascular magnetic resonance (CMR) measures such as extracellular volume fraction (ECV%). Outcomes following aortic valve intervention may be linked to the presence and extent of myocardial fibrosis. OBJECTIVES: This study sought to determine associations between ECV% and markers of left ventricular decompensation and post-intervention clinical outcomes. METHODS: Patients with severe aortic stenosis underwent CMR, including ECV% quantification using modified Look-Locker inversion recovery-based T1 mapping and late gadolinium enhancement before aortic valve intervention. A central core laboratory quantified CMR parameters. RESULTS: Four-hundred forty patients (age 70 卤 10 years, 59% male) from 10 international centers underwent CMR a median of 15 days (IQR: 4聽to聽58 days) before aortic valve intervention. ECV% did not vary by scanner manufacturer, magnetic field strength, or T1 mapping sequence (all p > 0.20). ECV% correlated with markers of left ventricular decompensation including left ventricular mass, left atrial volume, New York Heart Association functional class III/IV, late gadolinium enhancement, and lower left ventricular ejection fraction (p聽<聽0.05 for all), the latter 2 associations being independent of all other clinical variables (p聽=聽0.035 and p聽<聽0.001). After a median of 3.8 years (IQR: 2.8 to 4.6 years) of follow-up, 52 patients had died, 14 from adjudicated cardiovascular causes. A progressive increase in all-cause mortality was seen across tertiles of ECV% (17.3, 31.6, and 52.7 deaths per 1,000 patient-years; log-rank test; p聽=聽0.009). Not only was ECV% associated with cardiovascular mortality (p聽=聽0.003), but it was also independently associated with all-cause mortality following adjustment for age, sex, ejection fraction, and late gadolinium enhancement (hazard ratio per percent increase in ECV%: 1.10; 95% confidence interval [1.02 to 1.19]; p聽=聽0.013). CONCLUSIONS: In patients with severe aortic stenosis scheduled for aortic valve intervention, an increased ECV% is聽a聽measure of left ventricular decompensation and a powerful independent predictor of mortality

    Feebly-interacting particles: FIPs 2022 Workshop Report

    Get PDF
    Particle physics today faces the challenge of explaining the mystery of dark matter, the origin of matter over anti-matter in the Universe, the origin of the neutrino masses, the apparent fine-tuning of the electro-weak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves new physics at mass scales comparable to familiar matter, below the GeV-scale, or even radically below, down to sub-eV scales, and with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and indeed, existing data provide numerous hints for such possibility. A vibrant experimental program to discover such physics is under way, guided by a systematic theoretical approach firmly grounded on the underlying principles of the Standard Model. This document represents the report of the FIPs 2022 workshop, held at CERN between the 17 and 21 October 2022 and aims to give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs

    Feebly Interacting Particles: FIPs 2022 workshop report

    Get PDF
    Particle physics today faces the challenge of explaining the mystery of dark matter, the origin of matter over anti-matter in the Universe, the origin of the neutrino masses, the apparent fine-tuning of the electro-weak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves new physics at mass scales comparable to familiar matter, below the GeV-scale, or even radically below, down to sub-eV scales, and with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and indeed, existing data provide numerous hints for such possibility. A vibrant experimental program to discover such physics is under way, guided by a systematic theoretical approach firmly grounded on the underlying principles of the Standard Model. This document represents the report of the FIPs 2022 workshop, held at CERN between the 17 and 21 October 2022 and aims to give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs

    SND@LHC: The Scattering and Neutrino Detector at the LHC

    Get PDF
    SND@LHC is a compact and stand-alone experiment designed to perform measurements with neutrinos produced at the LHC in the pseudo-rapidity region of 7.2<<8.4{7.2 < \eta < 8.4}. The experiment is located 480 m downstream of the ATLAS interaction point, in the TI18 tunnel. The detector is composed of a hybrid system based on an 830 kg target made of tungsten plates, interleaved with emulsion and electronic trackers, also acting as an electromagnetic calorimeter, and followed by a hadronic calorimeter and a muon identification system. The detector is able to distinguish interactions of all three neutrino flavours, which allows probing the physics of heavy flavour production at the LHC in the very forward region. This region is of particular interest for future circular colliders and for very high energy astrophysical neutrino experiments. The detector is also able to search for the scattering of Feebly Interacting Particles. In its first phase, the detector will operate throughout LHC Run 3 and collect a total of 250 fb1\text{fb}^{-1}

    The SHiP experiment at the proposed CERN SPS Beam Dump Facility

    Get PDF
    The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50 m long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400 GeV protons, the experiment aims at profiting from the 4 x 10(19) protons per year that are currently unexploited at the SPS, over a period of 5-10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c(2) up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end

    High sensitivity C reactive protein, fibrinogen levels and the onset of major depressive disorder in post-acute coronary syndrome

    Get PDF
    BACKGROUND: Major depression disorder (MDD) is a common condition in patients suffering from acute coronary syndrome (ACS), and depression is a risk factor for mortality following an ACS. Growing evidence suggests that there is an intricate interplay between atherosclerosis, inflammation and depression. The aim of this study was to investigate the role of atherosclerosis-induced inflammation in the mediation of MDD. METHODS: 87 patients without depression were recruited at the time of an ACS, evaluated at 3 and 7 days and followed at 1, 3 and 9 months for the occurrence of a MDD as assessed by structured interviews (MINI). At each time point, they were monitored for inflammatory markers (high sensitivity C Reactive Protein {hsCRP} and fibrinogen), cardiovascular risk factors and atherosclerosis burden. Association between possible predictive characteristics and depression was assessed using a multivariable logistic regression model. RESULTS: The overall incidence of MDD, in this population, was 28.7% [95% CI: 19.5 - 39.4] during the 9-month follow up period. Elevated hsCRP was not associated with depression onset after an ACS (adjusted OR: 1.07 [0.77 - 1.48]; p = 0.70), and similarly no association was found with fibrinogen. Furthermore, we found no association between hsCRP, fibrinogen or atherosclerosis burden at any time-point, and the occurrence of a MDD (or HDRS-17 and MADRS). The only factor associated with depression occurrence after an ACS was a previous personal history of depression (adjusted OR: 11.02 [2.74 to 44.34]; p = 0.0007). CONCLUSIONS: The present study shows that after an ACS, patients treated with optimal medications could have a MDD independent of elevated hsCRP or fibrinogen levels. Personal history of depression may be a good marker to select patients who should be screened for depression after an ACS

    Feebly-interacting particles: FIPs 2022 workshop report

    Get PDF
    Particle physics today faces the challenge of explaining the mystery of dark matter, the origin of matter over anti-matter in the Universe, the origin of the neutrino masses, the apparent fine-tuning of the electro-weak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves new physics at mass scales comparable to familiar matter, below the GeV-scale, or even radically below, down to sub-eV scales, and with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and indeed, existing data provide numerous hints for such possibility. A vibrant experimental program to discover such physics is under way, guided by a systematic theoretical approach firmly grounded on the underlying principles of the Standard Model. This document represents the report of the FIPs 2022 workshop, held at CERN between the 17 and 21 October 2022 and aims to give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs
    corecore