216 research outputs found

    Deep Learning Face Representation by Joint Identification-Verification

    Full text link
    The key challenge of face recognition is to develop effective feature representations for reducing intra-personal variations while enlarging inter-personal differences. In this paper, we show that it can be well solved with deep learning and using both face identification and verification signals as supervision. The Deep IDentification-verification features (DeepID2) are learned with carefully designed deep convolutional networks. The face identification task increases the inter-personal variations by drawing DeepID2 extracted from different identities apart, while the face verification task reduces the intra-personal variations by pulling DeepID2 extracted from the same identity together, both of which are essential to face recognition. The learned DeepID2 features can be well generalized to new identities unseen in the training data. On the challenging LFW dataset, 99.15% face verification accuracy is achieved. Compared with the best deep learning result on LFW, the error rate has been significantly reduced by 67%

    Dominant run-length method for image classification

    Get PDF
    In this paper, we develop a new run-length texture feature extraction algorithm that significantly improves image classification accuracy over traditional techniques. By directly using part or all of the run-length matrix as a feature vector, much of the texture information is preserved. This approach is made possible by the introduction of a new multi-level dominant eigenvector estimation algorithm. It reduces the computational complexity of the Karhunen-Loeve Transform by several orders of magnitude. Combined with the Bhattacharya distance measure, they form an efficient feature selection algorithm. The advantage of this approach is demonstrated experimentally by the classification of two independent texture data sets. Perfect classification is achieved on the first data set of eight Brodatz textures. The 97% classification accuracy on the second data set of sixteen Vistex images further confirms the effectiveness of the algorithm. Based on the observation that most texture information is contained in the first few columns of the run-length matrix, especially in the first column, we develop a new fast, parallel run-length matrix computation scheme. Comparisons with the co-occurrence and wavelet methods demonstrate that the run-length matrices contain great discriminatory information and that a method of extracting such information is of paramount importance to successful classification.Funding was provided by the Office of Naval Research through Contract No. N00014-93-1-0602

    Aesthetic-Driven Image Enhancement by Adversarial Learning

    Full text link
    We introduce EnhanceGAN, an adversarial learning based model that performs automatic image enhancement. Traditional image enhancement frameworks typically involve training models in a fully-supervised manner, which require expensive annotations in the form of aligned image pairs. In contrast to these approaches, our proposed EnhanceGAN only requires weak supervision (binary labels on image aesthetic quality) and is able to learn enhancement operators for the task of aesthetic-based image enhancement. In particular, we show the effectiveness of a piecewise color enhancement module trained with weak supervision, and extend the proposed EnhanceGAN framework to learning a deep filtering-based aesthetic enhancer. The full differentiability of our image enhancement operators enables the training of EnhanceGAN in an end-to-end manner. We further demonstrate the capability of EnhanceGAN in learning aesthetic-based image cropping without any groundtruth cropping pairs. Our weakly-supervised EnhanceGAN reports competitive quantitative results on aesthetic-based color enhancement as well as automatic image cropping, and a user study confirms that our image enhancement results are on par with or even preferred over professional enhancement

    Multiple competitive learning network fusion for object classification

    Full text link