1,876 research outputs found

    How Glutamate Receptor Subunits Mix and Match: Details Uncovered

    Get PDF
    Until now, the atomic details explaining why certain subunits prefer to coassemble has been lacking in our understanding of glutamate receptor biogenesis. In this issue, Kumar et al. describe the structural basis by which preferential subunit assembly occurs for homomeric and heteromeric kainate-type glutamate receptors

    Resident curriculum guidelines for neurosurgery

    Get PDF
    Journal ArticleThis curriculum was created to detail the body of knowledge that should be attained by an individual completing residency training in neurological surgery. The specific structure of resident education in neurological surgery is defined by the American Board of Neurological Surgery, and each program is examined periodically by the Residency Review Committee. It is not the intent of this curriculum to direct or influence these two entities in any way. The curriculum is meant to serve as a template to be used by individual neurosurgery residency program directors and residents as they see fit. In many respects, this comprehensive and specific curriculum delineates the "ideal," and therefore complete compliance to the curriculum will be difficult or impossible to achieve for most if not all programs. Nevertheless, it represents a goal toward which to strive

    Spelling practices in school districts and regions across the United States and state spelling standards

    Get PDF
    The authors sent a survey during the 1996-97 school year to 670 school districts in 41 states requesting information on spelling instructional practices to ascertain whether spelling texts are still widely used in the United States given the current emphasis on developmental spelling in the primary grades and the March, 1996 publication of the NCTE/IRA standards. In addition, a search of the reading/language arts standards in 50 states in 1998 revealed that most states do have spelling standards, but only a few coincide with the CTE/IRA Standard 6 which mentions spelling

    Pharmacology of Dextromethorphan: Relevance to Dextromethorphan/Quinidine (Nuedexta®) Clinical Use

    Get PDF
    Dextromethorphan (DM) has been used for more than 50 years as an over-the-counter antitussive. Studies have revealed a complex pharmacology of DM with mechanisms beyond blockade of N-methyl-D-aspartate (NMDA) receptors and inhibition of glutamate excitotoxicity, likely contributing to its pharmacological activity and clinical potential. DM is rapidly metabolized to dextrorphan, which has hampered the exploration of DM therapy separate from its metabolites. Coadministration of DM with a low dose of quinidine inhibits DM metabolism, yields greater bioavailability and enables more specific testing of the therapeutic properties of DM apart from its metabolites. The development of the drug combination DM hydrobromide and quinidine sulfate (DM/Q), with subsequent approval by the US Food and Drug Administration for pseudobulbar affect, led to renewed interest in understanding DM pharmacology. This review summarizes the interactions of DM with brain receptors and transporters and also considers its metabolic and pharmacokinetic properties. To assess the potential clinical relevance of these interactions, we provide an analysis comparing DM activity from in vitro functional assays with the estimated free drug DM concentrations in the brain following oral DM/Q administration. The findings suggest that DM/Q likely inhibits serotonin and norepinephrine reuptake and also blocks NMDA receptors with rapid kinetics. Use of DM/Q may also antagonize nicotinic acetylcholine receptors, particularly those composed of α3β4 subunits, and cause agonist activity at sigma-1 receptors

    Optimizing genomic medicine in epilepsy through a gene-customized approach to missense variant interpretation

    Get PDF
    Gene panel and exome sequencing have revealed a high rate of molecular diagnoses among diseases where the genetic architecture has proven suitable for sequencing approaches, with a large number of distinct and highly penetrant causal variants identified among a growing list of disease genes. The challenge is, given the DNA sequence of a new patient, to distinguish disease-causing from benign variants. Large samples of human standing variation data highlight regional variation in the tolerance to missense variation within the protein-coding sequence of genes. This information is not well captured by existing bioinformatic tools, but is effective in improving variant interpretation. To address this limitation in existing tools, we introduce the missense tolerance ratio (MTR), which summarizes available human standing variation data within genes to encapsulate population level genetic variation. We find that patient-ascertained pathogenic variants preferentially cluster in low MTR regions (P < 0.005) of well-informed genes. By evaluating 20 publicly available predictive tools across genes linked to epilepsy, we also highlight the importance of understanding the empirical null distribution of existing prediction tools, as these vary across genes. Subsequently integrating the MTR with the empirically selected bioinformatic tools in a gene-specific approach demonstrates a clear improvement in the ability to predict pathogenic missense variants from background missense variation in disease genes. Among an independent test sample of case and control missense variants, case variants (0.83 median score) consistently achieve higher pathogenicity prediction probabilities than control variants (0.02 median score; Mann-Whitney U test, P < 1 × 10(-16)). We focus on the application to epilepsy genes; however, the framework is applicable to disease genes beyond epilepsy

    Randomized, Placebo-Controlled, Double-Blind Pilot Study of D-Cycloserine in Chronic Stroke

    Get PDF
    Stroke is a leading cause of death and disability in the USA. Up to 60% of patients do not fully recover despite intensive physical therapy treatment. N-Methyl-D-aspartate receptors (NMDA-R) have been shown to play a role in synaptic plasticity when activated. D-Cycloserine promotes NMDA receptor function by binding to receptors with unoccupied glycine sites. These receptors are involved in learning and memory. We hypothesized that D-cycloserine, when combined with robotic-assisted physiotherapy (RAP), would result in greater gains compared with placebo + RAP in stroke survivors. Participants (n=14) were randomized to D-cycloserine plus RAP or placebo plus RAP. Functional, cognitive, and quality-of-life measures were used to assess recovery. There was significant improvement in grip strength of the affected hand within both groups from baseline to 3 weeks (95% confidence interval for mean change, 3.95 ± 2.96 to 4.90 ± 3.56 N for D-cycloserine and 5.72 ± 3.98 to 8.44 ± 4.90 N for control). SIS mood domain showed improvement for both groups (95% confidence interval for mean change, 72.6 ± 16.3 to 82.9 ± 10.9 for D-cycloserine and 82.9 ± 13.5 to 90.3 ± 9.9 for control). This preliminary study does not provide evidence that D-cycloserine can provide greater gains in learning compared with placebo for stroke survivors

    Structural insights into phenylethanolamines high-affinity binding site in NR2B from binding and molecular modeling studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phenylethanolamines selectively bind to NR2B subunit-containing <it>N</it>-methyl-<it>D</it>-aspartate-subtype of ionotropic glutamate receptors and negatively modulate receptor activity. To investigate the structural and functional properties of the ifenprodil binding domain on the NR2B protein, we have purified a soluble recombinant rat NR2B protein fragment comprising the first ~400 amino acid amino-terminal domain (ATD2B) expressed in <it>E. coli</it>. Spectral measurements on refolded ATD2B protein demonstrated specific binding to ifenprodil. We have used site-directed mutagenesis, circular dichroism spectroscopy and molecular modeling to obtain structural information on the interactions between critical amino acid residues and ifenprodil of our soluble refolded ATD2B proteins. Ligand-induced changes in protein structure were inferred from changes in the circular dichroism spectrum, and the concentration dependence of these changes was used to determine binding constants for ifenprodil and its analogues.</p> <p>Results</p> <p>Ligand binding of ifenprodil, RO25,6981 and haloperidol on soluble recombinant ATD2B determined from circular dichroism spectroscopy yielded low-to-high micromolar equilibrium constants which concurred with functional IC<sub>50 </sub>measurement determined in heterologously expressed NR1/NR2B receptors in <it>Xenopus </it>oocytes. Amino acid residue substitutions of Asp101, Ile150 and Phe176 with alanine residue within the ATD2B protein altered the recombinant protein dissociation constants for ifenprodil, mirroring the pattern of their functional phenotypes. Molecular modeling of ATD2B as a clam-shell-like structure places these critical residues near a putative ligand binding site.</p> <p>Conclusion</p> <p>We report for the first time biochemical measurements show that the functional measurements actually reflect binding to the ATD of NR2B subunit. Insights gained from this study help advance the theory that ifenprodil is a ligand for the ATD of NR2B subunit.</p
    corecore