149 research outputs found

    Semi-infinite TASEP with a Complex Boundary Mechanism

    Get PDF
    We consider a totally asymmetric exclusion process on the positive half-line. When particles enter in the system according to a Poisson source, Liggett has computed all the limit distributions when the initial distribution has an asymptotic density. In this paper we consider systems for which particles enter at the boundary according to a complex mechanism depending on the current configuration in a finite neighborhood of the origin. For this kind of models, we prove a strong law of large numbers for the number of particles entered in the system at a given time. Our main tool is a new representation of the model as a multi-type particle system with infinitely many particle types

    A Fredholm Determinant Representation in ASEP

    Full text link
    In previous work the authors found integral formulas for probabilities in the asymmetric simple exclusion process (ASEP) on the integer lattice. The dynamics are uniquely determined once the initial state is specified. In this note we restrict our attention to the case of step initial condition with particles at the positive integers, and consider the distribution function for the m'th particle from the left. In the previous work an infinite series of multiple integrals was derived for this distribution. In this note we show that the series can be summed to give a single integral whose integrand involves a Fredholm determinant. We use this determinant representation to derive (non-rigorously, at this writing) a scaling limit.Comment: 12 Pages. Version 3 includes a scaling conjectur

    Survival of contact processes on the hierarchical group

    Get PDF
    We consider contact processes on the hierarchical group, where sites infect other sites at a rate depending on their hierarchical distance, and sites become healthy with a constant recovery rate. If the infection rates decay too fast as a function of the hierarchical distance, then we show that the critical recovery rate is zero. On the other hand, we derive sufficient conditions on the speed of decay of the infection rates for the process to exhibit a nontrivial phase transition between extinction and survival. For our sufficient conditions, we use a coupling argument that compares contact processes on the hierarchical group with freedom two with contact processes on a renormalized lattice. An interesting novelty in this renormalization argument is the use of a result due to Rogers and Pitman on Markov functionals.Comment: Minor changes compared to previous version. Final version. 30 pages. 1 figur

    Formulas for ASEP with Two-Sided Bernoulli Initial Condition

    Get PDF
    For the asymmetric simple exclusion process on the integer lattice with two-sided Bernoulli initial condition, we derive exact formulas for the following quantities: (1) the probability that site x is occupied at time t; (2) a correlation function, the probability that site 0 is occupied at time 0 and site x is occupied at time t; (3) the distribution function for the total flux across 0 at time t and its exponential generating function.Comment: 18 page

    On a property of random-oriented percolation in a quadrant

    Full text link
    Grimmett's random-orientation percolation is formulated as follows. The square lattice is used to generate an oriented graph such that each edge is oriented rightwards (resp. upwards) with probability pp and leftwards (resp. downwards) otherwise. We consider a variation of Grimmett's model proposed by Hegarty, in which edges are oriented away from the origin with probability pp, and towards it with probability 1−p1-p, which implies rotational instead of translational symmetry. We show that both models could be considered as special cases of random-oriented percolation in the NE-quadrant, provided that the critical value for the latter is 1/2. As a corollary, we unconditionally obtain a non-trivial lower bound for the critical value of Hegarty's random-orientation model. The second part of the paper is devoted to higher dimensions and we show that the Grimmett model percolates in any slab of height at least 3 in Z3\mathbb{Z}^3.Comment: The abstract has been updated, discussion has been added to the end of the articl

    Multilayer parking with screening on a random tree

    Full text link
    In this paper we present a multilayer particle deposition model on a random tree. We derive the time dependent densities of the first and second layer analytically and show that in all trees the limiting density of the first layer exceeds the density in the second layer. We also provide a procedure to calculate higher layer densities and prove that random trees have a higher limiting density in the first layer than regular trees. Finally, we compare densities between the first and second layer and between regular and random trees.Comment: 15 pages, 2 figure

    Characterization of the critical values of branching random walks on weighted graphs through infinite-type branching processes

    Full text link
    We study the branching random walk on weighted graphs; site-breeding and edge-breeding branching random walks on graphs are seen as particular cases. We describe the strong critical value in terms of a geometrical parameter of the graph. We characterize the weak critical value and relate it to another geometrical parameter. We prove that, at the strong critical value, the process dies out locally almost surely; while, at the weak critical value, global survival and global extinction are both possible.Comment: 14 pages, corrected some typos and minor mistake

    Non equilibrium stationary state for the SEP with births and deaths

    Full text link
    We consider the symmetric simple exclusion process in the interval \La_N:=[-N,N]\cap\mathbb Z with births and deaths taking place respectively on suitable boundary intervals I+I_+ and I−I_-, as introduced in De Masi et al. (J. Stat. Phys. 2011). We study the stationary measure density profile in the limit $N\to\infty

    Contact process in a wedge

    Get PDF
    We prove that the supercritical one-dimensional contact process survives in certain wedge-like space-time regions, and that when it survives it couples with the unrestricted contact process started from its upper invariant measure. As an application we show that a type of weak coexistence is possible in the nearest-neighbor ``grass-bushes-trees'' successional model introduced in Durrett and Swindle (1991).Comment: 11 pages, 4 figure

    Hyperscaling in the Domany-Kinzel Cellular Automaton

    Full text link
    An apparent violation of hyperscaling at the endpoint of the critical line in the Domany-Kinzel stochastic cellular automaton finds an elementary resolution upon noting that the order parameter is discontinuous at this point. We derive a hyperscaling relation for such transitions and discuss applications to related examples.Comment: 8 pages, latex, no figure
    • …
    corecore