12,541 research outputs found

    Key Issues in the Analysis of Remote Sensing Data: A report on the workshop

    Get PDF
    The procedures of a workshop assessing the state of the art of machine analysis of remotely sensed data are summarized. Areas discussed were: data bases, image registration, image preprocessing operations, map oriented considerations, advanced digital systems, artificial intelligence methods, image classification, and improved classifier training. Recommendations of areas for further research are presented

    Bayesian classification in a time-varying environment

    Get PDF
    The problem of classifying a pattern based on multiple observation made in a time-varying environment is analyzed. The identity of the pattern may itself change. A Bayesian solution is derived, after which the conditions of the physical situation are invoked to produce a cascade classifier model. Experimental results based on remote sensing data demonstrate the effectiveness of the classifier

    Implementation and evaluation of ILLIAC 4 algorithms for multispectral image processing

    Get PDF
    Data concerning a multidisciplinary and multi-organizational effort to implement multispectral data analysis algorithms on a revolutionary computer, the Illiac 4, are reported. The effectiveness and efficiency of implementing the digital multispectral data analysis techniques for producing useful land use classifications from satellite collected data were demonstrated

    A method for classification of multisource data using interval-valued probabilities and its application to HIRIS data

    Get PDF
    A method of classifying multisource data in remote sensing is presented. The proposed method considers each data source as an information source providing a body of evidence, represents statistical evidence by interval-valued probabilities, and uses Dempster's rule to integrate information based on multiple data source. The method is applied to the problems of ground-cover classification of multispectral data combined with digital terrain data such as elevation, slope, and aspect. Then this method is applied to simulated 201-band High Resolution Imaging Spectrometer (HIRIS) data by dividing the dimensionally huge data source into smaller and more manageable pieces based on the global statistical correlation information. It produces higher classification accuracy than the Maximum Likelihood (ML) classification method when the Hughes phenomenon is apparent

    A multiprocessor implementation of a contextual image processing algorithm

    Get PDF
    There are no author-identified significant results in this report

    The decision tree approach to classification

    Get PDF
    A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers

    Layered classification techniques for remote sensing applications

    Get PDF
    The layered classifier method is outlined and several applications to pattern classification for which the approach is suited are discussed

    On the accuracy of pixel relaxation labeling

    Get PDF
    There are no author-identified significant results in this report

    Pixel labeling by supervised probabilistic relaxation

    Get PDF
    There are no author-identified significant results in this report
    • …
    corecore