1,045 research outputs found

    A GPU based multidimensional amplitude analysis to search for tetraquark candidates

    Full text link
    The demand for computational resources is steadily increasing in experimental high energy physics as the current collider experiments continue to accumulate huge amounts of data and physicists indulge in more complex and ambitious analysis strategies. This is especially true in the fields of hadron spectroscopy and flavour physics where the analyses often depend on complex multidimensional unbinned maximum-likelihood fits, with several dozens of free parameters, with an aim to study the internal structure of hadrons. Graphics processing units (GPUs) represent one of the most sophisticated and versatile parallel computing architectures that are becoming popular toolkits for high energy physicists to meet their computational demands. GooFit is an upcoming open-source tool interfacing ROOT/RooFit to the CUDA platform on NVIDIA GPUs that acts as a bridge between the MINUIT minimization algorithm and a parallel processor, allowing probability density functions to be estimated on multiple cores simultaneously. In this article, a full-fledged amplitude analysis framework developed using GooFit is tested for its speed and reliability. The four-dimensional fitter framework, one of the firsts of its kind to be built on GooFit, is geared towards the search for exotic tetraquark states in the B0→J/ψKπB^0 \rightarrow J/\psi K \pi decays and can also be seamlessly adapted for other similar analyses. The GooFit fitter, running on GPUs, shows a remarkable improvement in the computing speed compared to a ROOT/RooFit implementation of the same analysis running on multi-core CPU clusters. Furthermore, it shows sensitivity to components with small contributions to the overall fit. It has the potential to be a powerful tool for sensitive and computationally intensive physics analyses.Comment: Replaced with the published version. Added the journal reference and the DO

    Firmware implementation of a recurrent neural network for the computation of the energy deposited in the liquid argon calorimeter of the ATLAS experiment

    Full text link
    The ATLAS experiment measures the properties of particles that are products of proton-proton collisions at the LHC. The ATLAS detector will undergo a major upgrade before the high luminosity phase of the LHC. The ATLAS liquid argon calorimeter measures the energy of particles interacting electromagnetically in the detector. The readout electronics of this calorimeter will be replaced during the aforementioned ATLAS upgrade. The new electronic boards will be based on state-of-the-art field-programmable gate arrays (FPGA) from Intel allowing the implementation of neural networks embedded in firmware. Neural networks have been shown to outperform the current optimal filtering algorithms used to compute the energy deposited in the calorimeter. This article presents the implementation of a recurrent neural network (RNN) allowing the reconstruction of the energy deposited in the calorimeter on Stratix 10 FPGAs. The implementation in high level synthesis (HLS) language allowed fast prototyping but fell short of meeting the stringent requirements in terms of resource usage and latency. Further optimisations in Very High-Speed Integrated Circuit Hardware Description Language (VHDL) allowed fulfilment of the requirements of processing 384 channels per FPGA with a latency smaller than 125 ns.Comment: 13 pages, 8 figure

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð„with constraintsð ð ð„ „ ðandðŽð„ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks