32 research outputs found

    Search for High-Mass Protostellar Objects in Cold IRAS Sources

    Full text link
    We present the results of CS J=2-1 mapping observations towards 39 massive star-forming regions selected from the previous CO line survey of cold IRAS sources with high-velocity CO flows along the Galactic plane (Yang et al. 2002). All sources are detected in CS J=2-1 showing the existence of CS clumps around the IRAS sources. However, one-third of the sources are not deeply embedded in the dense clumps by comparison of the central powering IRAS sources and the morphologies of CS clumps. Physical parameters of the dense molecular clumps are presented. We have identified 12 high-mass protostellar object (HMPO) candidates by checking the association between the dense cores and the IRAS sources, the detection of water maser, and the radio properties towards the IRAS sources. We find that the HMPO sources are characterized by low FIR luminosity to virial mass ratios since they are in very early evolutionary stages when the massive protostars have not reached their full luminosities, which are typical for zero-age main sequence stars. Large turbulent motion in the HMPO sources may be largely due to the large kinetic energy ejected by the central protostars formed in the dense clumps. However, alternative means or undetected outflows may also be responsible for the turbulence in the clumps.Comment: 20 pages, 4 figures, accepted for publication in A

    Astrometry of H2_{2}O Masers in Nearby Star-Forming Regions with VERA --- IV. L1448C

    Full text link
    We have carried out multi-epoch VLBI observations with VERA (VLBI Exploration of Radio Astrometry) of the 22~GHz H2_{2}O masers associated with a Class 0 protostar L1448C in the Perseus molecular cloud. The maser features trace the base of collimated bipolar jet driven by one of the infrared counter parts of L1448C named as L1448C(N) or L1448-mm A. We detected possible evidences for apparent acceleration and precession of the jet according to the three-dimensional velocity structure. Based on the phase-referencing VLBI astrometry, we have successfully detected an annual parallax of the H2_{2}O maser in L1448C to be 4.31±\pm0.33~milliarcseconds (mas) which corresponds to a distance of 232±\pm18~pc from the Sun. The present result is in good agreement with that of another H2_{2}O maser source NGC~1333 SVS13A in the Perseus molecular cloud, 235~pc. It is also consistent with the photometric distance, 220~pc. Thus, the distance to the western part of the Perseus molecular cloud complex would be constrained to be about 235~pc rather than the larger value, 300~pc, previously reported.Comment: 15 pages, 5 figures, accepted for publication in PAS

    Annual Parallax Measurements of an Infrared Dark Cloud MSXDC G034.43+00.24 with VERA

    Full text link
    We have measured the annual parallax of the H2O maser source associated with an infrared dark cloud MSXDC G034.43+00.24 from the observations with VERA (VLBI Exploration of Radio Astrometry). The parallax is 0.643 +/- 0.049 mas, corresponding to the distance of 1.56 +0.12/-0.11 kpc. This value is less than the half of the previous kinematic distance of 3.7 kpc. We revise the core mass estimates of MSXDC G034.43+00.24, based on virial masses, LTE masses and dust masses and show that the core masses decrease from the previous estimations of ~1000 Mo to hundreds of Mo. The spectral type derived from the luminosity also changes from O9.5 to B1 in the case of MM1. This spectral type is still consistent with that of the massive star. The radial velocity derived from the flat rotation model is smaller than the observed velocity, which corresponds to the peculiar motion of ~40 km/s in the line-of-sight direction.Comment: 14 pages, 11 figures, accepted to PASJ (vol. 63, No. 3

    KAgoshima Galactic Object survey with Nobeyama 45-metre telescope by Mapping in Ammonia lines (KAGONMA): Discovery of parsec-scale CO depletion in the Canis Major star-forming region

    Full text link
    In observational studies of infrared dark clouds, the number of detections of CO freeze-out onto dust grains (CO depletion) at pc-scale is extremely limited, and the conditions for its occurrence are, therefore, still unknown. We report a new object where pc-scale CO depletion is expected. As a part of Kagoshima Galactic Object survey with Nobeyama 45-m telescope by Mapping in Ammonia lines (KAGONMA), we have made mapping observations of NH3 inversion transition lines towards the star-forming region associated with the CMa OB1 including IRAS 07077-1026, IRAS 07081-1028, and PGCC G224.28-0.82. By comparing the spatial distributions of the NH3 (1,1) and C18O (J=1-0), an intensity anti-correlation was found in IRAS 07077-1026 and IRAS 07081-1028 on the ~1 pc scale. Furthermore, we obtained a lower abundance of C18O at least in IRAS 07077-1026 than in the other parts of the star-forming region. After examining high density gas dissipation, photodissociation, and CO depletion, we concluded that the intensity anti-correlation in IRAS 07077-1026 is due to CO depletion. On the other hand, in the vicinity of the centre of PGCC G224.28-0.82, the emission line intensities of both the NH3 (1,1) and C18O (J=1-0) were strongly detected, although the gas temperature and density were similar to IRAS 07077-1026. This indicates that there are situations where C18O (J=1-0) cannot trace dense gas on the pc scale and implies that the conditional differences that C18O (J=1-0) can and cannot trace dense gas are unclear.Comment: 19 pages, 15 figures, 4 tables, accepted for Publications of the Astronomical Society of Japan (PASJ). The version 1 is the Author's Original Version. My accepted manuscript will be publicly available on the arXiv one year after publication in the PAS

    On-The-Fly Observing System of the Nobeyama 45-m and ASTE 10-m Telescopes

    Full text link
    We have developed spectral line On-The-Fly (OTF) observing mode for the Nobeyama Radio Observatory 45-m and the Atacama Submillimeter Telescope Experiment 10-m telescopes. Sets of digital autocorrelation spectrometers are available for OTF with heterodyne receivers mounted on the telescopes, including the focal-plane 5 x 5 array receiver, BEARS, on the 45-m. During OTF observations, the antenna is continuously driven to cover the mapped region rapidly, resulting in high observing efficiency and accuracy. Pointing of the antenna and readouts from the spectrometer are recorded as fast as 0.1 second. In this paper we report improvements made on software and instruments, requirements and optimization of observing parameters, data reduction process, and verification of the system. It is confirmed that, using optimal parameters, the OTF is about twice as efficient as conventional position-switch observing method.Comment: 11 pages, 13 figures, accepted for publication in PAS

    Ammonia mapping observations of the Galactic infrared bubble N49: Three NH3_3 clumps along the molecular filament

    Full text link
    We have carried out the NH3_3 (J,K)=(1,1),(2,2),(J,K)=(1,1),(2,2), and (3,3)(3,3) mapping observations toward the Galactic infrared bubble N49 (G28.83-0.25) using the Nobeyama 45 m telescope. Three NH3_3 clumps (A, B, and C) were discovered along the molecular filament with the radial velocities of \sim 96, 87, and 89 km s1^{-1}, respectively. The kinetic temperature derived from the NH3_3 (2,2)/NH3_3 (1,1) shows Tkin=27.0±0.6T_{\rm kin} = 27.0 \pm 0.6 K enhanced at Clump B in the eastern edge of the bubble, where position coincides with massive young stellar objects (MYSOs) associated with the 6.7 GHz class II methanol maser source. This result shows the dense clump is locally heated by stellar feedback from the embedded MYSOs. The NH3_3 Clump B also exists at the 88 km s1^{-1} and 95 km s1^{-1} molecular filament intersection. We therefore suggest that the NH3_3 dense gas formation in Clump B can be explained by a filament-filament interaction scenario. On the other hand, NH3_3 Clump A and C at the northern and southern side of the molecular filament might be the sites of spontaneous star formation because these clumps are located \sim5-10 pc away from the edge of the bubble.Comment: 29 pages, 13 figures, 3 tables, accepted for Publications of the Astronomical Society of Japan (PASJ

    Fundamental Parameters of the Milky Way Galaxy Based on VLBI astrometry

    Full text link
    We present analyses to determine the fundamental parameters of the Galaxy based on VLBI astrometry of 52 Galactic maser sources obtained with VERA, VLBA and EVN. We model the Galaxy's structure with a set of parameters including the Galaxy center distance R_0, the angular rotation velocity at the LSR Omega_0, mean peculiar motion of the sources with respect to Galactic rotation (U_src, V_src, W_src), rotation-curve shape index, and the V component of the Solar peculiar motions V_sun. Based on a Markov chain Monte Carlo method, we find that the Galaxy center distance is constrained at a 5% level to be R_0 = 8.05 +/- 0.45 kpc, where the error bar includes both statistical and systematic errors. We also find that the two components of the source peculiar motion U_src and W_src are fairly small compared to the Galactic rotation velocity, being U_src = 1.0 +/- 1.5 km/s and W_src = -1.4 +/- 1.2 km/s. Also, the rotation curve shape is found to be basically flat between Galacto-centric radii of 4 and 13 kpc. On the other hand, we find a linear relation between V_src and V_sun as V_src = V_sun -19 (+/- 2) km/s, suggesting that the value of V_src is fully dependent on the adopted value of V_sun. Regarding the rotation speed in the vicinity of the Sun, we also find a strong correlation between Omega_0 and V_sun. We find that the angular velocity of the Sun, Omega_sun, which is defined as Omega_sun = Omega_0 + V_sun/R_0, can be well constrained with the best estimate of Omega_sun = 31.09 +/- 0.78 km/s/kpc. This corresponds to Theta_0 = 238 +/- 14 km/s if one adopts the above value of R_0 and recent determination of V_sun ~ 12 km/s.Comment: 14 pages, 6 figures, PASJ in pres

    The First Very Long Baseline Interferometry Image of 44 GHz Methanol Maser with the KVN and VERA Array (KaVA)

    Full text link
    We have carried out the first very long baseline interferometry (VLBI) imaging of 44 GHz class I methanol maser (7_{0}-6_{1}A^{+}) associated with a millimeter core MM2 in a massive star-forming region IRAS 18151-1208 with KaVA (KVN and VERA Array), which is a newly combined array of KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry). We have succeeded in imaging compact maser features with a synthesized beam size of 2.7 milliarcseconds x 1.5 milliarcseconds (mas). These features are detected at a limited number of baselines within the length of shorter than approximately 650 km corresponding to 100 Mlambda in the uv-coverage. The central velocity and the velocity width of the 44 GHz methanol maser are consistent with those of the quiescent gas rather than the outflow traced by the SiO thermal line. The minimum component size among the maser features is ~ 5 mas x 2 mas, which corresponds to the linear size of ~ 15 AU x 6 AU assuming a distance of 3 kpc. The brightness temperatures of these features range from ~ 3.5 x 10^{8} to 1.0 x 10^{10} K, which are higher than estimated lower limit from a previous Very Large Array observation with the highest spatial resolution of ~ 50 mas. The 44 GHz class I methanol maser in IRAS 18151-1208 is found to be associated with the MM2 core, which is thought to be less evolved than another millimeter core MM1 associated with the 6.7 GHz class II methanol maser.Comment: 19 pages, 3 figure
    corecore