21,584 research outputs found

    Performance of wind turbines in a turbulent atmosphere

    Get PDF
    The effect of atmospheric turbulence on the power fluctuations of large wind turbines was studied. The significance of spatial non-uniformities of the wind is emphasized. The turbulent wind with correlation in time and space is simulated on the computer by Shinozukas method. The wind turbulence is modelled according to the Davenport spectrum with an exponential spatial correlation function. The rotor aerodynamics is modelled by simple blade element theory. Comparison of the spectrum of power output signal between 1-D and 3-D turbulence, shows the significant power fluctuations centered around the blade passage frequency

    Properties of nonaqueous electrolytes First quarterly report, 20 Jun. - 19 Sep. 1966

    Get PDF
    Solvent purification and water content determined by gas chromatography for nonaqueous electrolyte

    Elastic, Viscous, and Mass Load Effects on Poststroke Muscle Recruitment and Co-contraction During Reaching: A Pilot Study

    Get PDF
    Background: Resistive exercise after stroke can improve strength (force-generating capacity) without increasing spasticity (velocity-dependent hypertonicity). However, the effect of resistive load type on muscle activation and co-contraction after stroke is not clear. Objective: The purpose of this study was to determine the effect of load type (elastic, viscous, or mass) on muscle activation and co-contraction during resisted forward reaching in the paretic and nonparetic arms after stroke. Design: This investigation was a single-session, mixed repeated-measures pilot study. Methods: Twenty participants (10 with hemiplegia and 10 without neurologic involvement) reached forward with each arm against equivalent elastic, viscous, and mass loads. Normalized shoulder and elbow electromyography impulses were analyzed to determine agonist muscle recruitment and agonist-antagonist muscle co-contraction. Results: Muscle activation and co-contraction levels were significantly higher on virtually all outcome measures for the paretic and nonparetic arms of the participants with stroke than for the matched control participants. Only the nonparetic shoulder responded to load type with similar activation levels but variable co-contraction responses relative to those of the control shoulder. Elastic and viscous loads were associated with strong activation; mass and viscous loads were associated with minimal co-contraction. Limitations: A reasonable, but limited, range of loads was available. Conclusions: Motor control deficits were evident in both the paretic and the nonparetic arms after stroke when forward reaching was resisted with viscous, elastic, or mass loads. The paretic arm responded with higher muscle activation and co-contraction levels across all load conditions than the matched control arm. Smaller increases in muscle activation and co-contraction levels that varied with load type were observed in the nonparetic arm. On the basis of the response of the nonparetic arm, this study provides preliminary evidence suggesting that viscous loads elicited strong muscle activation with minimal co-contraction. Further intervention studies are needed to determine whether viscous loads are preferable for poststroke resistive exercise programs
    • …
    corecore