2,770 research outputs found

    CONSTRUCTION OF ISOCOMFORTABLE MICROCLIMATE PARAMETERS VALUES MATRIX

    Get PDF
    Abstract. In the article is considered the modern approach to the assessment of climate parameters on the basis of the thermal comfort indices in accordance with the requirements of GOST R ISO 7730-2009. For the first time is introduced the concept of isocomfortable values of microclimate parameters, representing a set providing a predetermined thermal comfort level. Are calculated and presented the examples of three-dimensional arrays of given parameters as the convection temperature function from relative humidity and mobility of air. Microclimate parameters ensuring a specified level of thermal comfort were calculated by the method of successive approximations.Proposed in this article matrixes of isocomfortable values of microclimate parameters can be formulated for different combinations of source parameters

    Relative luminosity measurement of the LHC with the ATLAS forward calorimeter

    Full text link
    In this paper it is shown that a measurement of the relative luminosity changes at the LHC may be obtained by analysing the currents drawn from the high voltage power supplies of the electromagnetic section of the forward calorimeter of the ATLAS detector. The method was verified with a reproduction of a small section of the ATLAS forward calorimeter using proton beams of known beam energies and variable intensities at the U-70 accelerator at IHEP in Protvino, Russia. The experimental setup and the data taking during a test beam run in April 2008 are described in detail. A comparison of the measured high voltage currents with reference measurements from beam intensity monitors shows a linear dependence on the beam intensity. The non-linearities are measured to be less than 0.5 % combining statistical and systematic uncertainties.Comment: 16 page

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Standalone vertex Ô¨Ānding in the ATLAS muon spectrometer