6,724 research outputs found

    A Side of Mercury Not Seen By Mariner 10

    Get PDF
    More than 60,000 images of Mercury were taken at ~29 deg elevation during two sunrises, at 820 nm, and through a 1.35 m diameter off-axis aperture on the SOAR telescope. The sharpest resolve 0.2" (140 km) and cover 190-300 deg longitude -- a swath unseen by the Mariner 10 spacecraft -- at complementary phase angles to previous ground-based optical imagery. Our view is comparable to that of the Moon through weak binoculars. Evident are the large crater Mozart shadowed on the terminator, fresh rayed craters, and other albedo features keyed to topography and radar reflectivity, including the putative huge ``Basin S'' on the limb. Classical bright feature Liguria resolves across the northwest boundary of the Caloris basin into a bright splotch centered on a sharp, 20 km diameter radar crater, and is the brightest feature within a prominent darker ``cap'' (Hermean feature Solitudo Phoenicis) that covers the northern hemisphere between longitudes 140-250 deg. The cap may result from space weathering that darkens via a magnetically enhanced flux of the solar wind, or that reddens low latitudes via high solar insolation.Comment: 7 pages, 4 PDF figures, pdfLaTeX, typos corrected, Fig. 2 modified slightly to add crater diameters not given in published versio

    Fragmentation and Evolution of Molecular Clouds. I: Algorithm and First Results

    Full text link
    We present a series of simulations of the fragmentation of a molecular cloud, leading to the formation of a cluster of protostellar cores. The purpose of these simulations is to address a specific numerical problem called artificial fragmentation, that plagues SPH simulations of cloud fragmentation. We argue that this is a serious problem that needs to be addressed, and that the only reasonable and practical way to address it is to use a relatively new technique called particle splitting. Our largest simulation has an effective resolution of 256^3 particles (much higher than most previous SPH simulations of cloud fragmentation) and results in the formation of a dense cluster containing ~3000 protostellar cores. It is the first simulation of this kind to properly resolve the Jeans mass throughout the entire system, at all times, thus preventing artificial fragmentation.Comment: 47 pages, 15 figures (2 grayscale, one color), ApJ Suppl, in pres

    Multifrequency VLA observations of the FR I radio galaxy 3C 31: morphology, spectrum and magnetic field

    Full text link
    We present high-quality VLA images of the FR I radio galaxy 3C 31 in the frequency range 1365 to 8440 MHz with angular resolutions from 0.25 to 40 arcsec. Our new images reveal complex, well resolved filamentary substructure in the radio jets and tails. We also use these images to explore the spectral structure of 3C 31 on large and small scales. We infer the apparent magnetic field structure by correcting for Faraday rotation. Some of the intensity substructure in the jets is clearly related to structure in their apparent magnetic field: there are arcs of emission where the degree of linear polarization increases, with the apparent magnetic field parallel to the ridges of the arcs. The spectral indices are significantly steeper (0.62) within 7 arcsec of the nucleus than between 7 and 50 arcsec (0.52 - 0.57). The spectra of the jet edges are also slightly flatter than the average for their surroundings. At larger distances, the jets are clearly delimited from surrounding larger-scale emission both by their flatter radio spectra and by sharp brightness gradients. The spectral index of 0.62 in the first 7 arcsec of 3C 31's jets is very close to that found in other FR I galaxies where their jets first brighten in the radio and where X-ray synchrotron emission is most prominent. Farther from the nucleus, where the spectra flatten, X-ray emission is fainter relative to the radio. The brightest X-ray emission from FR I jets is therefore not associated with the flattest radio spectra, but with a particle-acceleration process whose characteristic energy index is 2.24. The spectral flattening with distance from the nucleus occurs where our relativistic jet models require deceleration, and the flatter-spectra at the jet edges may be associated with transverse velocity shear. (Slightly abridged)Comment: 17 pages, 13 figures, accepted for publication in MNRA
    • ÔÇŽ