4,311 research outputs found

    critRHIC: The RHIC Low Energy Program

    Get PDF
    Recent experimental and theoretical developments have motivated interest in a more detailed exploration of heavy ion collisions in the range sqrt(sNN)=5-15 GeV. In contrast to interactions at the full RHIC energy of sqrt(sNN)=200 GeV, such collisions result in systems characterized by much higher baryon chemical potential, muB. Extensions of lattice QCD calculations to non-zero values of muB suggest that a critical point may exist in this region of the QCD phase diagram. Discovery of the critical point or, equivalently, determining the location where the phase transition from partonic to hadronic matter switches from a smooth crossover to 1st order would establish a major landmark in the phase diagram. Initial studies of Pb+Pb collisions in this energy range have revealed several unexpected features in the data. In response to these results, it has been suggested that the existing RHIC accelerator and experiments can be used to further the investigation of this important physics topic. This proceeding briefly summarizes the theoretical and experimental situation with particular emphasis on the conclusions from a RIKEN BNL workshop held in March of 2006.Comment: 8 pages, 2 figures, Conference Proceeding from Strangeness in Quark Matter 2006, accepted for publication in J. Phys. G; Added final journal reference and fixed typo in Ref

    Is Strangeness still interesting at RHIC ?

    Full text link
    With the advent of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL), Heavy Ion Physics will enter a new energy regime. The question is whether the signatures proposed for the discovery of a phase transition from hadronic matter to a Quark Gluon Plasma (QGP), that were established on the basis of collisions at the BEVALAC, the AGS, and the SPS, respectively, are still useful and detectable at these high incident energies. In the past two decades, measurements related to strangeness formation in the collision were advocated as potential signatures and were tested in numerous fixed target experiments at the AGS and the SPS. In this article I will review the capabilities of the RHIC detectors to measure various aspects of strangeness, and I will try to answer the question whether the information content of those measurements is comparable to the one at lower energies.Comment: 12 pages, 7 figures, Invited Talk at the IV International Conference on Strangeness in Quark Matter, Padova (Italy), July 20-24, 199

    Antihyperon-Production in Relativistic Heavy Ion Collision

    Get PDF
    Recently it has been shown that the observed antiproton yield in heavy-ion collisions at CERN-SpS energies can be understood by multi-pionic interactions which enforce local chemical equilibrium of the antiprotons with the nucleons and pions. Here we show that antihyperons are driven towards local chemical equilibrium with pions, nucleons and kaons on a timescale of less than 3 fm/c when applying a similar argument for the antihyperons by considering the inverse channel of annihilation reactions anti-Y + p to pions + kaons. These multi-mesonic reactions easily explain the antihyperon yields at CERN-SpS energies as advertised in pure thermal, hadronic models without the need of a quark gluon plasma phase. In addition, the argument also applies for AGS energies.Comment: 4 pages using RevTeX, 1 eps figur

    Interferometry signatures for QCD first-order phase transition in heavy ion collisions at GSI-FAIR energies

    Full text link
    Using the technique of quantum transport of the interfering pair we examine the Hanbury-Brown-Twiss (HBT) interferometry signatures for the particle-emitting sources of pions and kaons produced in the heavy ion collisions at GSI-FAIR energies. The evolution of the sources is described by relativistic hydrodynamics with the system equation of state of the first-order phase transition from quark-gluon plasma (QGP) to hadronic matter. We use quantum probability amplitudes in a path-integral formalism to calculate the two-particle correlation functions, where the effects of particle decay and multiple scattering are taken into consideration. We find that the HBT radii of kaons are smaller than those of pions for the same initial conditions. Both the HBT radii of pions and kaons increase with the system initial energy density. The HBT lifetimes of the pion and kaon sources are sensitive to the initial energy density. They are significantly prolonged when the initial energy density is tuned to the phase boundary between the QGP and mixed phase. This prolongations of the HBT lifetimes of pions and kaons may likely be observed in the heavy ion collisions with an incident energy in the GSI-FAIR energy range.Comment: 16 pages, 4 figure

    Applicability of Monte Carlo Glauber models to relativistic heavy ion collision data

    Full text link
    The accuracy of Monte Carlo Glauber model descriptions of minimum-bias multiplicity frequency distributions is evaluated using data from the Relativistic Heavy Ion Collider (RHIC) within the context of a sensitive, power-law representation introduced previously by Trainor and Prindle (TP). Uncertainties in the Glauber model input and in the mid-rapidity multiplicity frequency distribution data are reviewed and estimated using the TP centrality methodology. The resulting errors in model-dependent geometrical quantities used to characterize heavy ion collisions ({\em i.e.} impact parameter, number of nucleon participants NpartN_{part}, number of binary interactions NbinN_{bin}, and average number of binary collisions per incident participant nucleon ν\nu) are presented for minimum-bias Au-Au collisions at sNN\sqrt{s_{NN}} = 20, 62, 130 and 200 GeV and Cu-Cu collisions at sNN\sqrt{s_{NN}} = 62 and 200 GeV. Considerable improvement in the accuracy of collision geometry quantities is obtained compared to previous Monte Carlo Glauber model studies, confirming the TP conclusions. The present analysis provides a comprehensive list of the sources of uncertainty and the resulting errors in the above geometrical collision quantities as functions of centrality. The capability of energy deposition data from trigger detectors to enable further improvements in the accuracy of collision geometry quantities is also discussed.Comment: 27 pages, 4 figures, 11 table

    Are we close to the QGP? - Hadrochemical vs. microscopic analysis of particle production in ultrarelativistic heavy ion collisions

    Get PDF
    Ratios of hadronic abundances are analyzed for pp and nucleus-nucleus collisions at sqrt(s)=20 GeV using the microscopic transport model UrQMD. Secondary interactions significantly change the primordial hadronic cocktail of the system. A comparison to data shows a strong dependence on rapidity. Without assuming thermal and chemical equilibrium, predicted hadron yields and ratios agree with many of the data, the few observed discrepancies are discussed.Comment: 12 pages, 4 figure
    • …
    corecore