4 research outputs found

    Continentality and Oceanity in the Mid and High Latitudes of the Northern Hemisphere and Their Links to Atmospheric Circulation

    No full text
    The climate continentality or oceanity is one of the main characteristics of the local climatic conditions, which varies with global and regional climate change. This paper analyzes indexes of continentality and oceanity, as well as their variations in the middle and high latitudes of the Northern Hemisphere in the period 1950–2015. Climatology and changes in continentality and oceanity are examined using Conrad’s Continentality Index (CCI) and Kerner’s Oceanity Index (KOI). The impact of Northern Hemisphere teleconnection patterns on continentality/oceanity conditions was also evaluated. According to CCI, continentality is more significant in Northeast Siberia and lower along the Pacific coast of North America as well as in coastal areas in the northern part of the Atlantic Ocean. However, according to KOI, areas of high continentality do not precisely correspond with those of low oceanity, appearing to the south and west of those identified by CCI. The spatial patterns of changes in continentality thus seem to be different. According to CCI, a statistically significant increase in continentality has only been found in Northeast Siberia. In contrast, in the western part of North America and the majority of Asia, continentality has weakened. According to KOI, the climate has become increasingly continental in Northern Europe and the majority of North America and East Asia. Oceanity has increased in the Canadian Arctic Archipelago and in some parts of the Mediterranean region. Changes in continentality were primarily related to the increased temperature of the coldest month as a consequence of changes in atmospheric circulation: the positive phase of North Atlantic Oscillation (NAO) and East Atlantic (EA) patterns has dominated in winter in recent decades. Trends in oceanity may be connected with the diminishing extent of seasonal sea ice and an associated increase in sea surface temperature

    Identifying barriers for nature-based solutions in flood risk management: An interdisciplinary overview using expert community approach

    No full text
    The major event that hit Europe in summer 2021 reminds society that floods are recurrent and among the costliest and deadliest natural hazards. The long-term flood risk management (FRM) efforts preferring sole technical measures to prevent and mitigate floods have shown to be not sufficiently effective and sensitive to the environment. Nature-Based Solutions (NBS) mark a recent paradigm shift of FRM towards solutions that use nature-derived features, processes and management options to improve water retention and mitigate floods. Yet, the empirical evidence on the effects of NBS across various settings remains fragmented and their implementation faces a series of institutional barriers. In this paper, we adopt a community expert perspective drawing upon LAND4FLOOD Natural flood retention on private land network (https://www.land4flood.eu) in order to identify a set of barriers and their cascading and compound interactions relevant to individual NBS. The experts identified a comprehensive set of 17 barriers affecting the implementation of 12 groups of NBS in both urban and rural settings in five European regional environmental domains (i.e., Boreal, Atlantic, Continental, Alpine-Carpathian, and Mediterranean). Based on the results, we define avenues for further research, connecting hydrology and soil science, on the one hand, and land use planning, social geography and economics, on the other. Our suggestions ultimately call for a transdisciplinary turn in the research of NBS in FRM