3,414 research outputs found

    X-Atlas: An Online Archive of Chandra's Stellar High Energy Transmission Gratings Observations

    Full text link
    The high-resolution X-ray spectroscopy made possible by the 1999 deployment of the Chandra X-ray Observatory has revolutionized our understanding of stellar X-ray emission. Many puzzles remain, though, particularly regarding the mechanisms of X-ray emission from OB stars. Although numerous individual stars have been observed in high-resolution, realizing the full scientific potential of these observations will necessitate studying the high-resolution Chandra dataset as a whole. To facilitate the rapid comparison and characterization of stellar spectra, we have compiled a uniformly processed database of all stars observed with the Chandra High Energy Transmission Grating (HETG). This database, known as X-Atlas, is accessible through a web interface with searching, data retrieval, and interactive plotting capabilities. For each target, X-Atlas also features predictions of the low-resolution ACIS spectra convolved from the HETG data for comparison with stellar sources in archival ACIS images. Preliminary analyses of the hardness ratios, quantiles, and spectral fits derived from the predicted ACIS spectra reveal systematic differences between the high-mass and low-mass stars in the atlas and offer evidence for at least two distinct classes of high-mass stars. A high degree of X-ray variability is also seen in both high and low-mass stars, including Capella, long thought to exhibit minimal variability. X-Atlas contains over 130 observations of approximately 25 high-mass stars and 40 low-mass stars and will be updated as additional stellar HETG observations become public. The atlas has recently expanded to non-stellar point sources, and Low Energy Transmission Grating (LETG) observations are currently being added as well

    Real Time Space Weather Support for Chandra X-ray Observatory Operations

    Get PDF
    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (less than 1 MeV) flux in Chandra s high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1, with real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector system

    Variability in Proto-Planetary Nebulae: I. Light Curve Studies of 12 Carbon-Rich Objects

    Full text link
    We have carried out long-term (14 years) V and R photometric monitoring of 12 carbon-rich proto-planetary nebulae. The light and color curves display variability in all of them. The light curves are complex and suggest multiple periods, changing periods, and/or changing amplitudes, which are attributed to pulsation. A dominant period has been determined for each and found to be in the range of ~150 d for the coolest (G8) to 35-40 d for the warmest (F3). A clear, linear inverse relationship has been found in the sample between the pulsation period and the effective temperature and also an inverse linear relationship between the amplitude of light variation and the effective temperature. These are consistent with the expectation for a pulsating post-AGB star evolving toward higher temperature at constant luminosity. The published spectral energy distributions and mid-infrared images show these objects to have cool (200 K), detached dust shells and published models imply that intensive mass loss ended a few thousand years ago. The detection of periods as long as 150 d in these requires a revision in the published post-AGB evolution models that couple the pulsation period to the mass loss rate and that assume that intensive mass loss ended when the pulsation period had decreased to 100 d. This revision will have the effect of extending the time scale for the early phases of post-AGB evolution. It appears that real time evolution in the pulsation periods of individual objects may be detectable on the time scale of two decades

    Spitzer Imaging of the Nearby Rich Young Cluster, Cep OB3b

    Full text link
    We map the full extent of a rich massive young cluster in the Cep OB3b association with the IRAC and MIPS instruments aboard the {\it Spitzer} Space Telescope and the ACIS instrument aboard the Chandra\it{Chandra} X-Ray Observatory. At 700 pc, it is revealed to be the second nearest large (>1000>1000 member), young (<5< 5 Myr) cluster known. In contrast to the nearest large cluster, the Orion Nebula Cluster, Cep OB3b is only lightly obscured and is mostly located in a large cavity carved out of the surrounding molecular cloud. Our infrared and X-ray datasets, as well as visible photometry from the literature, are used to take a census of the young stars in Cep OB3b. We find that the young stars within the cluster are concentrated in two sub-clusters; an eastern sub-cluster, near the Cep B molecular clump, and a western sub-cluster, near the Cep F molecular clump. Using our census of young stars, we examine the fraction of young stars with infrared excesses indicative of circumstellar disks. We create a map of the disk fraction throughout the cluster and find that it is spatially variable. Due to these spatial variations, the two sub-clusters exhibit substantially different average disk fractions from each other: 3232% \pm 4% and 5050% \pm 6%. We discuss whether the discrepant disk fractions are due to the photodestruction of disks by the high mass members of the cluster or whether they result from differences in the ages of the sub-clusters. We conclude that the discrepant disk fractions are most likely due to differences in the ages.Comment: 48 Pages, 12 figures, 6 table

    Predicting Chandra CCD Degradation with the Chandra Radiation Model

    Get PDF
    Not long after launch of the Chandra X-Ray Observatory, it was discovered that the Advanced CCD Imaging Spectrometer (ACIS) detector was rapidly degrading due to radiation. Analysis by Chandra personnel showed that this degradation was due to 10w energy protons (100 - 200 keV) that scattered down the optical path onto the focal plane. In response to this unexpected problem, the Chandra Team developed a radiation-protection program that has been used to manage the radiation damage to the CCDs. This program consists of multiple approaches - scheduled sating of the ACIS detector from the radiation environment during passage through radiation belts, real-time monitoring of space weather conditions, on-board monitoring of radiation environment levels, and the creation of a radiation environment model for use in computing proton flux and fluence at energies that damage the ACIS detector. This radiation mitigation program has been very successful. The initial precipitous increase in the CCDs' charge transfer inefficiency (CTI) resulting from proton damage has been slowed dramatically, with the front-illuminated CCDS having an increase in CTI of only 2.3% per year, allowing the ASIS detector's expected lifetime to exceed requirements. This paper concentrates on one aspect of the Chandra radiation mitigation program, the creation of the Chandra Radiation Model (CRM). Because of Chandra's highly elliptical orbit, the spacecraft spends most of its time outside of the trapped radiation belts that present the severest risks to the ACIS detector. However, there is still a proton flux environment that must be accounted for in all parts of Chandra's orbit. At the time of Chandra's launch there was no engineering model of the radiation environment that could be used in the outer regions of the spacecraft's orbit, so the CRM was developed to provide the flux environment of 100 - 200 keV protons in the outer magnetosphere, magnetosheath, and solar wind regions of geospace. This presentation describes CRM, its role in Chandra operations, and its prediction of the ACIS CTI increase
    • ‚Ķ