94 research outputs found

    Hashing for Similarity Search: A Survey

    Full text link
    Similarity search (nearest neighbor search) is a problem of pursuing the data items whose distances to a query item are the smallest from a large database. Various methods have been developed to address this problem, and recently a lot of efforts have been devoted to approximate search. In this paper, we present a survey on one of the main solutions, hashing, which has been widely studied since the pioneering work locality sensitive hashing. We divide the hashing algorithms two main categories: locality sensitive hashing, which designs hash functions without exploring the data distribution and learning to hash, which learns hash functions according the data distribution, and review them from various aspects, including hash function design and distance measure and search scheme in the hash coding space

    Learning Deep Representations of Appearance and Motion for Anomalous Event Detection

    Full text link
    We present a novel unsupervised deep learning framework for anomalous event detection in complex video scenes. While most existing works merely use hand-crafted appearance and motion features, we propose Appearance and Motion DeepNet (AMDN) which utilizes deep neural networks to automatically learn feature representations. To exploit the complementary information of both appearance and motion patterns, we introduce a novel double fusion framework, combining both the benefits of traditional early fusion and late fusion strategies. Specifically, stacked denoising autoencoders are proposed to separately learn both appearance and motion features as well as a joint representation (early fusion). Based on the learned representations, multiple one-class SVM models are used to predict the anomaly scores of each input, which are then integrated with a late fusion strategy for final anomaly detection. We evaluate the proposed method on two publicly available video surveillance datasets, showing competitive performance with respect to state of the art approaches.Comment: Oral paper in BMVC 201

    Discrete Multi-modal Hashing with Canonical Views for Robust Mobile Landmark Search

    Full text link
    Mobile landmark search (MLS) recently receives increasing attention for its great practical values. However, it still remains unsolved due to two important challenges. One is high bandwidth consumption of query transmission, and the other is the huge visual variations of query images sent from mobile devices. In this paper, we propose a novel hashing scheme, named as canonical view based discrete multi-modal hashing (CV-DMH), to handle these problems via a novel three-stage learning procedure. First, a submodular function is designed to measure visual representativeness and redundancy of a view set. With it, canonical views, which capture key visual appearances of landmark with limited redundancy, are efficiently discovered with an iterative mining strategy. Second, multi-modal sparse coding is applied to transform visual features from multiple modalities into an intermediate representation. It can robustly and adaptively characterize visual contents of varied landmark images with certain canonical views. Finally, compact binary codes are learned on intermediate representation within a tailored discrete binary embedding model which preserves visual relations of images measured with canonical views and removes the involved noises. In this part, we develop a new augmented Lagrangian multiplier (ALM) based optimization method to directly solve the discrete binary codes. We can not only explicitly deal with the discrete constraint, but also consider the bit-uncorrelated constraint and balance constraint together. Experiments on real world landmark datasets demonstrate the superior performance of CV-DMH over several state-of-the-art methods

    Cross-Paced Representation Learning with Partial Curricula for Sketch-based Image Retrieval

    Get PDF
    In this paper we address the problem of learning robust cross-domain representations for sketch-based image retrieval (SBIR). While most SBIR approaches focus on extracting low- and mid-level descriptors for direct feature matching, recent works have shown the benefit of learning coupled feature representations to describe data from two related sources. However, cross-domain representation learning methods are typically cast into non-convex minimization problems that are difficult to optimize, leading to unsatisfactory performance. Inspired by self-paced learning, a learning methodology designed to overcome convergence issues related to local optima by exploiting the samples in a meaningful order (i.e. easy to hard), we introduce the cross-paced partial curriculum learning (CPPCL) framework. Compared with existing self-paced learning methods which only consider a single modality and cannot deal with prior knowledge, CPPCL is specifically designed to assess the learning pace by jointly handling data from dual sources and modality-specific prior information provided in the form of partial curricula. Additionally, thanks to the learned dictionaries, we demonstrate that the proposed CPPCL embeds robust coupled representations for SBIR. Our approach is extensively evaluated on four publicly available datasets (i.e. CUFS, Flickr15K, QueenMary SBIR and TU-Berlin Extension datasets), showing superior performance over competing SBIR methods

    From Deterministic to Generative: Multi-Modal Stochastic RNNs for Video Captioning

    Full text link
    Video captioning in essential is a complex natural process, which is affected by various uncertainties stemming from video content, subjective judgment, etc. In this paper we build on the recent progress in using encoder-decoder framework for video captioning and address what we find to be a critical deficiency of the existing methods, that most of the decoders propagate deterministic hidden states. Such complex uncertainty cannot be modeled efficiently by the deterministic models. In this paper, we propose a generative approach, referred to as multi-modal stochastic RNNs networks (MS-RNN), which models the uncertainty observed in the data using latent stochastic variables. Therefore, MS-RNN can improve the performance of video captioning, and generate multiple sentences to describe a video considering different random factors. Specifically, a multi-modal LSTM (M-LSTM) is first proposed to interact with both visual and textual features to capture a high-level representation. Then, a backward stochastic LSTM (S-LSTM) is proposed to support uncertainty propagation by introducing latent variables. Experimental results on the challenging datasets MSVD and MSR-VTT show that our proposed MS-RNN approach outperforms the state-of-the-art video captioning benchmarks

    Hierarchical LSTM with Adjusted Temporal Attention for Video Captioning

    Full text link
    Recent progress has been made in using attention based encoder-decoder framework for video captioning. However, most existing decoders apply the attention mechanism to every generated word including both visual words (e.g., "gun" and "shooting") and non-visual words (e.g. "the", "a"). However, these non-visual words can be easily predicted using natural language model without considering visual signals or attention. Imposing attention mechanism on non-visual words could mislead and decrease the overall performance of video captioning. To address this issue, we propose a hierarchical LSTM with adjusted temporal attention (hLSTMat) approach for video captioning. Specifically, the proposed framework utilizes the temporal attention for selecting specific frames to predict the related words, while the adjusted temporal attention is for deciding whether to depend on the visual information or the language context information. Also, a hierarchical LSTMs is designed to simultaneously consider both low-level visual information and high-level language context information to support the video caption generation. To demonstrate the effectiveness of our proposed framework, we test our method on two prevalent datasets: MSVD and MSR-VTT, and experimental results show that our approach outperforms the state-of-the-art methods on both two datasets

    NAIS: Neural Attentive Item Similarity Model for Recommendation

    Full text link
    Item-to-item collaborative filtering (aka. item-based CF) has been long used for building recommender systems in industrial settings, owing to its interpretability and efficiency in real-time personalization. It builds a user's profile as her historically interacted items, recommending new items that are similar to the user's profile. As such, the key to an item-based CF method is in the estimation of item similarities. Early approaches use statistical measures such as cosine similarity and Pearson coefficient to estimate item similarities, which are less accurate since they lack tailored optimization for the recommendation task. In recent years, several works attempt to learn item similarities from data, by expressing the similarity as an underlying model and estimating model parameters by optimizing a recommendation-aware objective function. While extensive efforts have been made to use shallow linear models for learning item similarities, there has been relatively less work exploring nonlinear neural network models for item-based CF. In this work, we propose a neural network model named Neural Attentive Item Similarity model (NAIS) for item-based CF. The key to our design of NAIS is an attention network, which is capable of distinguishing which historical items in a user profile are more important for a prediction. Compared to the state-of-the-art item-based CF method Factored Item Similarity Model (FISM), our NAIS has stronger representation power with only a few additional parameters brought by the attention network. Extensive experiments on two public benchmarks demonstrate the effectiveness of NAIS. This work is the first attempt that designs neural network models for item-based CF, opening up new research possibilities for future developments of neural recommender systems

    Optimized Cartesian KK-Means

    Full text link
    Product quantization-based approaches are effective to encode high-dimensional data points for approximate nearest neighbor search. The space is decomposed into a Cartesian product of low-dimensional subspaces, each of which generates a sub codebook. Data points are encoded as compact binary codes using these sub codebooks, and the distance between two data points can be approximated efficiently from their codes by the precomputed lookup tables. Traditionally, to encode a subvector of a data point in a subspace, only one sub codeword in the corresponding sub codebook is selected, which may impose strict restrictions on the search accuracy. In this paper, we propose a novel approach, named Optimized Cartesian KK-Means (OCKM), to better encode the data points for more accurate approximate nearest neighbor search. In OCKM, multiple sub codewords are used to encode the subvector of a data point in a subspace. Each sub codeword stems from different sub codebooks in each subspace, which are optimally generated with regards to the minimization of the distortion errors. The high-dimensional data point is then encoded as the concatenation of the indices of multiple sub codewords from all the subspaces. This can provide more flexibility and lower distortion errors than traditional methods. Experimental results on the standard real-life datasets demonstrate the superiority over state-of-the-art approaches for approximate nearest neighbor search.Comment: to appear in IEEE TKDE, accepted in Apr. 201
    corecore