1,084 research outputs found

    An obesogenic feedforward loop involving PPARγ, acyl-CoA binding protein and GABAA receptor

    Full text link
    Acyl-coenzyme-A-binding protein (ACBP), also known as a diazepam-binding inhibitor (DBI), is a potent stimulator of appetite and lipogenesis. Bioinformatic analyses combined with systematic screens revealed that peroxisome proliferator-activated receptor gamma (PPARγ) is the transcription factor that best explains the ACBP/DBI upregulation in metabolically active organs including the liver and adipose tissue. The PPARγ agonist rosiglitazone-induced ACBP/DBI upregulation, as well as weight gain, that could be prevented by knockout of Acbp/Dbi in mice. Moreover, liver-specific knockdown of Pparg prevented the high-fat diet (HFD)-induced upregulation of circulating ACBP/DBI levels and reduced body weight gain. Conversely, knockout of Acbp/Dbi prevented the HFD-induced upregulation of PPARγ. Notably, a single amino acid substitution (F77I) in the γ2 subunit of gamma-aminobutyric acid A receptor (GABAAR), which abolishes ACBP/DBI binding to this receptor, prevented the HFD-induced weight gain, as well as the HFD-induced upregulation of ACBP/DBI, GABAAR γ2, and PPARγ. Based on these results, we postulate the existence of an obesogenic feedforward loop relying on ACBP/DBI, GABAAR, and PPARγ. Interruption of this vicious cycle, at any level, indistinguishably mitigates HFD-induced weight gain, hepatosteatosis, and hyperglycemia

    Long-term disability trajectories in relapsing multiple sclerosis patients treated with early intensive or escalation treatment strategies

    Get PDF
    Background and aims: No consensus exists on how aggressively to treat relapsing-remitting multiple sclerosis (RRMS) nor on the timing of the treatment. The objective of this study was to evaluate disability trajectories in RRMS patients treated with an early intensive treatment (EIT) or with a moderate-efficacy treatment followed by escalation to higher-efficacy disease modifying therapy (ESC). Methods: RRMS patients with ⩾5-year follow-up and ⩾3 visits after disease modifying therapy (DMT) start were selected from the Italian MS Registry. EIT group included patients who received as first DMT fingolimod, natalizumab, mitoxantrone, alemtuzumab, ocrelizumab, cladribine. ESC group patients received the high efficacy DMT after ⩾1 year of glatiramer acetate, interferons, azathioprine, teriflunomide or dimethylfumarate treatment. Patients were 1:1 propensity score (PS) matched for characteristics at the first DMT. The disability trajectories were evaluated by applying a longitudinal model for repeated measures. The effect of early versus late start of high-efficacy DMT was assessed by the mean annual Expanded Disability Status Scale (EDSS) changes compared with baseline values (delta-EDSS) in EIT and ESC groups. Results: The study cohort included 2702 RRMS patients. The PS matching procedure produced 363 pairs, followed for a median (interquartile range) of 8.5 (6.5-11.7) years. Mean annual delta-EDSS values were all significantly (p < 0.02) higher in the ESC group compared with the EIT group. In particular, the mean delta-EDSS differences between the two groups tended to increase from 0.1 (0.01-0.19, p = 0.03) at 1 year to 0.30 (0.07-0.53, p = 0.009) at 5 years and to 0.67 (0.31-1.03, p = 0.0003) at 10 years. Conclusion: Our results indicate that EIT strategy is more effective than ESC strategy in controlling disability progression over time

    Direct non transcriptional role of NF-Y in DNA replication

    Get PDF
    NF-Y is a heterotrimeric transcription factor, which plays a pioneer role in the transcriptional control of promoters containing the CCAAT-box, among which genes involved in cell cycle regulation, apoptosis and DNA damage response. The knock-down of the sequence-specific subunit NF-YA triggers defects in S-phase progression, which lead to apoptotic cell death. Here, we report that NF-Y has a critical function in DNA replication progression, independent from its transcriptional activity. NF-YA colocalizes with early DNA replication factories, its depletion affects the loading of replisome proteins to DNA, among which Cdc45, and delays the passage from early to middle-late S phase. Molecular combing experiments are consistent with a role for NF-Y in the control of fork progression. Finally, we unambiguously demonstrate a direct non-transcriptional role of NF-Y in the overall efficiency of DNA replication, specifically in the DNA elongation process, using a Xenopus cell-free system. Our findings broaden the activity of NF-Y on a DNA metabolism other than transcription, supporting the existence of specific TFs required for proper and efficient DNA replication
    • …
    corecore