201 research outputs found

    RNNs Implicitly Implement Tensor Product Representations

    Full text link
    Recurrent neural networks (RNNs) can learn continuous vector representations of symbolic structures such as sequences and sentences; these representations often exhibit linear regularities (analogies). Such regularities motivate our hypothesis that RNNs that show such regularities implicitly compile symbolic structures into tensor product representations (TPRs; Smolensky, 1990), which additively combine tensor products of vectors representing roles (e.g., sequence positions) and vectors representing fillers (e.g., particular words). To test this hypothesis, we introduce Tensor Product Decomposition Networks (TPDNs), which use TPRs to approximate existing vector representations. We demonstrate using synthetic data that TPDNs can successfully approximate linear and tree-based RNN autoencoder representations, suggesting that these representations exhibit interpretable compositional structure; we explore the settings that lead RNNs to induce such structure-sensitive representations. By contrast, further TPDN experiments show that the representations of four models trained to encode naturally-occurring sentences can be largely approximated with a bag of words, with only marginal improvements from more sophisticated structures. We conclude that TPDNs provide a powerful method for interpreting vector representations, and that standard RNNs can induce compositional sequence representations that are remarkably well approximated by TPRs; at the same time, existing training tasks for sentence representation learning may not be sufficient for inducing robust structural representations.Comment: Accepted to ICLR 201

    Tensor Product Generation Networks for Deep NLP Modeling

    Full text link
    We present a new approach to the design of deep networks for natural language processing (NLP), based on the general technique of Tensor Product Representations (TPRs) for encoding and processing symbol structures in distributed neural networks. A network architecture --- the Tensor Product Generation Network (TPGN) --- is proposed which is capable in principle of carrying out TPR computation, but which uses unconstrained deep learning to design its internal representations. Instantiated in a model for image-caption generation, TPGN outperforms LSTM baselines when evaluated on the COCO dataset. The TPR-capable structure enables interpretation of internal representations and operations, which prove to contain considerable grammatical content. Our caption-generation model can be interpreted as generating sequences of grammatical categories and retrieving words by their categories from a plan encoded as a distributed representation

    Augmentic Compositional Models for Knowledge Base Completion Using Gradient Representations

    Get PDF
    Neural models of Knowledge Base data have typically employed compositional representations of graph objects: entity and relation embeddings are systematically combined to evaluate the truth of a candidate Knowedge Base entry. Using a model inspired by Harmonic Grammar, we propose to tokenize triplet embeddings by subjecting them to a process of optimization with respect to learned well-formedness conditions on Knowledge Base triplets. The resulting model, known as Gradient Graphs, leads to sizable improvements when implemented as a companion to compositional models. Also, we show that the supracompositional triplet token embeddings it produces have interpretable properties that prove helpful in performing inference on the resulting triplet representations
    • …
    corecore