14 research outputs found

    Alternate trait-based leaf respiration schemes evaluated at ecosystem-scale through carbon optimization modeling and canopy property data

    Get PDF
    Leaf maintenance respiration (Rleaf,m) is a major but poorly understood component of the terrestrial carbon cycle (C). Earth systems models (ESMs) use simple sub‐models relating Rleaf,m to leaf traits, applied at canopy scale. Rleaf,m models vary depending on which leaf N traits they incorporate (e.g., mass or area based) and the form of relationship (linear or nonlinear). To simulate vegetation responses to global change, some ESMs include ecological optimization to identify canopy structures that maximize net C accumulation. However, the implications for optimization of using alternate leaf‐scale empirical Rleaf,m models are undetermined. Here we combine alternate well‐known empirical models of Rleaf,m with a process model of canopy photosynthesis. We quantify how net canopy exports of C vary with leaf area index (LAI) and total canopy N (TCN). Using data from tropical and arctic canopies, we show that estimates of canopy Rleaf,m vary widely among the three models. Using an optimization framework, we show that the LAI and TCN values maximizing C export depends strongly on the Rleaf,m model used. No single model could match observed arctic and tropical LAI‐TCN patterns with predictions of optimal LAI‐TCN. We recommend caution in using leaf‐scale empirical models for components of ESMs at canopy‐scale. Rleaf,m models may produce reasonable results for a specified LAI, but, due to their varied representations of Rleaf,mfoliar N sensitivity, are associated with different and potentially unrealistic optimization dynamics at canopy scale. We recommend ESMs to be evaluated using response surfaces of canopy C export in LAI‐TCN space to understand and mitigate these risks

    Reliability Ensemble Averaging of 21st century projections of terrestrial net primary productivity reduces global and regional uncertainties

    Get PDF
    Multi-model averaging techniques provide opportunities to extract additional information from large ensembles of simulations. In particular, present-day model skill can be used to evaluate their potential performance in future climate simulations. Multi-model averaging methods have been used extensively in climate and hydrological sciences, but they have not been used to constrain projected plant productivity responses to climate change, which is a major uncertainty in Earth system modelling. Here, we use three global observationally orientated estimates of current net primary productivity (NPP) to perform a reliability ensemble averaging (REA) method using 30 global simulations of the 21st century change in NPP based on the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) <q>business as usual</q> emissions scenario. We find that the three REA methods support an increase in global NPP by the end of the 21st century (2095–2099) compared to 2001–2005, which is 2–3 % stronger than the ensemble ISIMIP mean value of 24.2 Pg C y<sup>−1</sup>. Using REA also leads to a 45–68 % reduction in the global uncertainty of 21st century NPP projection, which strengthens confidence in the resilience of the CO<sub>2</sub> fertilization effect to climate change. This reduction in uncertainty is especially clear for boreal ecosystems although it may be an artefact due to the lack of representation of nutrient limitations on NPP in most models. Conversely, the large uncertainty that remains on the sign of the response of NPP in semi-arid regions points to the need for better observations and model development in these regions

    Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: a perspective from long‐term data assimilation

    Get PDF
    It is critical to accurately estimate carbon (C) turnover time as it dominates the uncertainty in ecosystem C sinks and their response to future climate change. In the absence of direct observations of ecosystem C losses, C turnover times are commonly estimated under the steady state assumption (SSA), which has been applied across a large range of temporal and spatial scales including many at which the validity of the assumption is likely to be violated. However, the errors associated with improperly applying SSA to estimate C turnover time and its covariance with climate as well as ecosystem C sequestrations have yet to be fully quantified. Here, we developed a novel model-data fusion framework and systematically analyzed the SSA-induced biases using time-series data collected from 10 permanent forest plots in the eastern China monsoon region. The results showed that (a) the SSA significantly underestimated mean turnover times (MTTs) by 29%, thereby leading to a 4.83-fold underestimation of the net ecosystem productivity (NEP) in these forest ecosystems, a major C sink globally; (b) the SSA-induced bias in MTT and NEP correlates negatively with forest age, which provides a significant caveat for applying the SSA to young-aged ecosystems; and (c) the sensitivity of MTT to temperature and precipitation was 22% and 42% lower, respectively, under the SSA. Thus, under the expected climate change, spatiotemporal changes in MTT are likely to be underestimated, thereby resulting in large errors in the variability of predicted global NEP. With the development of observation technology and the accumulation of spatiotemporal data, we suggest estimating MTTs at the disequilibrium state via long-term data assimilation, thereby effectively reducing the uncertainty in ecosystem C sequestration estimations and providing a better understanding of regional or global C cycle dynamics and C-climate feedback
    corecore