80 research outputs found

    Constraining the Effective Mass of Majorana Neutrino with Sterile Neutrino Mass for Inverted Ordering Spectrum

    Full text link
    Inspired by the experimental anomalies in neutrino physics and recent oscillation data from short baseline and another neutrino experiment, the realization of one extra neutrino flavor seem to be favoring. This extra flavor may change the observable, mββ|m_{\beta\beta}| of currently data taking and next-generation (ββ)0ν(\beta\beta)_{0\nu}-decay experiments aim to probe and possibly look the Inverted Ordering region(mββ102|m_{\beta\beta}| \simeq 10^{-2}eV) of parameter space. This observation would allow establishing physics beyond the standard model and phenomena like lepton number violation and Majorana nature of neutrino. The range of this observable (mββ|m_{\beta\beta}|) is not very well defined for both the ordering of mass spectrum(Normal Ordering and Inverted Ordering). Several attempts have been made for defining exactly the range for three active neutrino states. For contrasting this range, I have worked with an extra mass states, ν4\nu_{4} and its effect on the observable with various combination of CP violation Majorana phases by taking into account the updated data on the neutrino oscillation parameters for IO case. Based on the Monte Carlo technique, a parameter region is obtained using the fourth Majorana-Dirac phase of sterile parameters that lead to an effective mass below 0.01 eV or .05 eV for inverted mass ordering case which is planned to be observed in the near future experiment.Comment: arXiv admin note: text overlap with arXiv:1505.00978 by other author

    Analysis of Ultra-High Energy Muons at INO-ICAL Using Pair Meter Technique

    Get PDF
    The proposed magnetized Iron CALorimeter (ICAL) detector at India-based Neutrino Observatory (INO) is a large-sized underground detector. ICAL is designed to reconstruct muon momentum using magnetic spectrometers as detectors. Muon energy measurements using magnets fail for high energy muons (TeV range), since the angular deflection of the muon in the magnetic field is negligible and the muon tracks become nearly straight. A new technique for measuring the energy of muons in the TeV range, used by the CCFR neutrino detector is known as the pair meter technique. This technique estimates muon energy by measuring the energy deposited by the muon in several layers of an iron calorimeter through e+ and e− pair production. In this work we have performed Geant4-based preliminary analysis for iron plates and have demonstrated the feasibility to detect very high energy muons (1–1000 TeV) at the underground ICAL detector operating as a pair meter. This wide range of energy spectrum will not only be helpful for studying the cosmic rays in the Knee region which is around 5 PeV in the cosmic ray spectra but also useful for understanding the atmospheric neutrino flux for the running and upcoming ultra-high energy atmospheric neutrino experiments

    Growth, cell division and sporulation in mycobacteria

    Get PDF
    Bacteria have the ability to adapt to different growth conditions and to survive in various environments. They have also the capacity to enter into dormant states and some bacteria form spores when exposed to stresses such as starvation and oxygen deprivation. Sporulation has been demonstrated in a number of different bacteria but Mycobacterium spp. have been considered to be non-sporulating bacteria. We recently provided evidence that Mycobacterium marinum and likely also Mycobacterium bovis bacillus Calmette–Guérin can form spores. Mycobacterial spores were detected in old cultures and our findings suggest that sporulation might be an adaptation of lifestyle for mycobacteria under stress. Here we will discuss our current understanding of growth, cell division, and sporulation in mycobacteria